• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The holm oak transcriptome is rebuilt, a key step towards understanding its biology

Bioengineer by Bioengineer
April 4, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Holm oaks are some of the most emblematic trees in Mediterranean forests and the most abundant ones on the Iberian Peninsula. Holm oaks have had a plethora of applications throughout their hundreds of thousands of years of history and currently are one of the main resources for dehesa livestock farmers, the dehesa being a vital ecosystem in southern Spain. The AGR-164 research group at the University of Cordoba, headed by Professor Jesús V. Jorrín Novo, has sequenced the transcriptome of this emblematic forest species, which is an important starting point in order to understand its reactions to stress as well as other aspects of its biology.

The genome is the DNA content that includes essential genetic information for life. The transcriptome, on the other hand, includes only the genes that are expressed. In other words, if the genome is the library that contains all the information about an individual, the transcriptome is the part that is read, and it can offer clues as to gene function.

Specifically, this research work, published in the scientific journal PLOS ONE, rebuilt this transcriptome, which was unknown beforehand, by combining two different methods of DNA sequencing and three programs to assemble the data, a less frequent methodology and one that was used with the aim of improving the results. This is a bioinformatics project with a wide scope in which more than 34,000 annotated transcriptions were generated in the end. This methodology, which has proven to be effective, could be used in other non-model organisms.

Holm oak is a forest species for which there were no previous studies at a molecular level nor were there reference genomes. Now, thanks to this study, “we obtained a first approximation of the genome,” points out Víctor Guerrero, one of the main researchers who worked on the project. All the information that was generated could be used to tackle new research projects that would study the molecular behavior of this kind of tree in different situations of stress, such as, for instance, oak decline, an issue that is causing a high rate of mortality in these kinds of trees and has been dubbed “the cancer of the dehesa.”

This forest species reproduces by means of cross-pollination, and thus it has a wide genetic variability. Knowing its transcriptome could help to understand why some specimens are superior in terms of survival and what genes or molecular mechanisms are involved in different situations such as germination, drought resistance or acorn quality, something that could be considered when developing future plans for reforestation. In order to do so, Professor Jorrín Novo explains, “there is stilll a lot of work to be done, though this study places us closer to the great unknowns at a molecular level.”

###

References:
Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome. PLOS ONE. 2019 Jan 16;14(1):e0210356. doi: 10.1371/journal.pone.0210356. eCollection 2019.

Media Contact
Elena Lázaro Real
[email protected]
http://dx.doi.org/10.1371/journal.pone.0210356

Tags: AgricultureBiologyGenesGenetics
Share12Tweet7Share2ShareShareShare1

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Individuals with Sensitive Personalities May Have Increased Risk of Mental Health Issues, Study Finds

Enhancing Rheology of Silicon Nitride Resins for 3D Printing

Mount Sinai Reinstated as Official Medical Services Provider for US Open Tennis Championships

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.