• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Shape shifting mirror opens a vista for the future

Bioengineer by Bioengineer
March 28, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Japanese researchers develop a glue-free mirror that can be used in vacuum chambers

IMAGE

Credit: JTEC Corporation

A team of researchers from JTEC Corporation and Osaka University developed a bimorph deformable mirror that allows for precise shape modification and usage under vacuum, a world first.

Because piezo actuators and a mirror substrate in conventional deformable mirrors were bonded with epoxy glues, this caused problems such as organic gas emission in a vacuum chamber and denatured bonding materials due to chamber cleaning at high temperatures. Thus, the use of a deformable mirror was performed only in ambient atmospheres.

The team led by Kazuo Yamauchi invented a method for bonding PZT actuators to a mirror substrate without using epoxy glues to develop a glue-free bimorph deformable mirror (Figure 1), allowing for usage of deformable mirrors under vacuum.

In this study, they developed a technique to bond PZT actuators to a mirror substrate by using inorganic silver nanoparticles (not containing organic matter). They confirmed that the emission rate of organic gas was at an acceptable level: the vacuum chamber was not contaminated by the gas while maintaining the same level of operability as that of conventional mirrors.

They also confirmed that the bonding and bending characteristics were almost the same before and after heating at 200℃, which is necessary for cleaning procedures. These results verified practical usage of this mirror under vacuum. (Figure 2)

This group’s achievements will permit a maximal use of 100-1,000 times brighter X-rays provided by fourth-generation synchrotron radiation facilities than that of current third-generation facilities. This mirror will be used in X-ray experiments and soft X-ray systems, both of which need a high vacuum environment, for the fourth-generation large synchrotron radiation facilities in which precision optics under vacuum are indispensable.

“Our bimorph deformable mirror will be used in a variety of applications — not only for X-ray radiation systems, but also for controlling space telescopes and high intensity lasers,” says first author Yoshio Ichii.

###

The article “Development of a glue-free bimorph mirror for use in vacuum chambers” is published in Review of Scientific Instruments at DOI: https://doi.org/10.1063/1.5066105.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.
Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/research/2019/20190311_2

Related Journal Article

http://dx.doi.org/10.1063/1.5066105

Tags: Nanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    68 shares
    Share 27 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Science Behind Honoring the Human Corpse

Exploring Health Literacy Gaps in Postoperative Breast Cancer Care

Choosing Inpatient Care: Insights from Unemployed Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.