• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Laser physics: Downsizing the particle accelerator

Bioengineer by Bioengineer
March 27, 2019
in Chemistry
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The plasma wakefield acceleration (PWFA) technique is regarded as a highly promising route to the next generation of particle accelerators. In this approach, a pulse of high-energy electrons is injected into a preformed plasma, and creates a wake upon which other electrons can effectively surf. In this way, their energy can surpass that of the driver by a factor of 2-5. However, many technical and physical problems must be resolved before the technology becomes practical. This is no easy task, as only large-scale particle accelerators, such as those at DESY, CERN or SLAC, are currently capable of producing the driver pulses needed to generate the wakefield. A team led by Professor Stefan Karsch at the Laboratory of Attosecond Physics (LAP) – a joint venture between Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics (MPQ) – has now shown that PWFA can be implemented in university labs. The new findings will facilitate further investigation of the PWFA concept as a basis for the development of compact, next-generation particle accelerators.

###

Media Contact
Katrin Bilgeri
[email protected]

Related Journal Article

https://www.en.uni-muenchen.de/news/newsarchiv/2019/doepp_prx.html
http://dx.doi.org/10.1103/PhysRevX.9.011046

Tags: Chemistry/Physics/Materials SciencesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TTUHSC Researchers Discover Resilience of Blood-Brain Barrier in Alzheimer’s Disease Model

Unique DNA Regions for Purpureocillium lilacinum Markers Discovered

Calcification: Key Indicator of Lung Metastasis in Osteosarcoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.