• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

C. elegans roundworms ‘harvest’ an essential coenzyme from the bacteria they consume

Bioengineer by Bioengineer
March 26, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mass. General study may lead to better treatment of rare but devastating human genetic disorder

A study conducted in C. elegans nematode roundworms may lead to improved treatment of a rare human genetic disorder that causes severe neurological symptoms leading to death in early childhood. In their report published in Nature Chemical Biology, two Massachusetts General Hospital (MGH) investigators describe finding that C. elegans can acquire the molybdenum cofactor (Moco) – a molecule essential to the function of essential enzymes – by consuming E.coli bacteria, the first evidence that Moco can be transferred between species. The investigators also identified the metabolic pathway that is responsible for the symptoms observed in Moco deficiency.

“Until now, Moco was thought to be too unstable to be trafficked between cells and tissues, much less between organisms separated by a billion years of evolution,” says lead author Kurt Warnhoff, PhD, MGH Molecular Biology. “But we found the interaction between these species to be quite robust. Bacteria isolated from rotting fruit – a typical C. elegans habitat – were able to supply Moco to the nematodes. This ability of C. elegans to extract Moco from its microbiome is intriguing and offers hope that we might be able to exploit similar systems to deliver mature Moco to patients with Moco deficiency.”

Many reactions essential to life require the action of enzymes, several of which, in turn, require molecules called cofactors or coenzymes to function correctly. One such coenzyme, Moco, is required for the incorporation of the element molybdenum into several important enzymes. In humans, genetic mutations in Moco-synthesizing enzymes cause Moco deficiency. Affected infants develop seizures, deterioration of brain tissue, developmental delay and usually die within the first few months of life. Moco deficiency is estimated to affect 1 in 100,000 to 200,000 births.

Healthy animals from C. elegans to humans can synthesize Moco within their bodies. In mutant C. elegans that cannot synthesize Moco, normal development halts and the animals die unless fed a bacterial diet featuring the coenzyme, paralleling the effects of Moco deficiency in humans. Using C. elegans genetics to investigate how Moco deficiency leads to death, Warnhoff and senior author Gary Ruvkun, PhD, also of MGH Molecular Biology, identified the pathway that normally breaks down the sulfur-containing amino acids methionine and cysteine as the culprit. A byproduct of that breakdown is the release of sulfite, a toxin used as a preservative in many foods, and the researchers found that lack of Moco inactivates the SUOX enzyme that normally detoxifies sulfite, leading to death of the nematodes.

Says Ruvkun, a professor of Genetics at Harvard Medical School, “These molecular insights offer potential therapeutic avenues for treating Moco deficiency. Limiting exposure to sulfur-containing compounds and inactivating the enzymes that generate sulfite might alleviate the physiologic defects and resultant death that are inevitable in human Moco deficiency.”

Finding that simply ingesting Moco-producing E.coli was sufficient to support the growth and development of Moco-deficient C. elegans suggests that the coenzyme might function as a vitamin. The researchers found that around two-thirds of bacterial genomes synthesize Moco, indicating that the nematodes could depend on bacteria to supply this essential cofactor most of the time. Now Warnhoff and Ruvkun and working to discern how C. elegans determines when to synthesize Moco within its body and when to ingest as a “dietary supplement,” from the bacteria it consumes.

###

The study was supported by National Institutes of Health grant 5R01 GM044619-26 and Damon Runyon Fellowship grant DRG-2293-16.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $925 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2018 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of “America’s Best Hospitals.”

Media Contact
Terri Ogan Janos
[email protected]
http://dx.doi.org/10.1038/s41589-019-0249-y

Tags: BiologyMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025
Link Between Type 2 Diabetes and Heart Failure

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

Exploring Type 3 APS, T1DM, and LADA Insights

August 23, 2025

Thermal Vests Alleviate Mealtime Anxiety in Anorexia Patients

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.