• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study finds natural selection favors cheaters

Bioengineer by Bioengineer
March 19, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Riverside research focused on interaction between nitrogen-fixing bacteria and their hosts

IMAGE

Credit: Sachs lab, UC Riverside

Mutualisms, which are interactions between members of different species that benefit both parties, are found everywhere — from exchanges between pollinators and the plants they pollinate, to symbiotic interactions between us and our beneficial microbes.

Natural selection — the process whereby organisms better adapted to their environment tend to survive and produce more offspring — predicts, however, that mutualisms should fall apart. Individuals that gain from the cooperation of others but do not reciprocate (so-called cheaters) should arise and destabilize mutualisms. Yet to date, surprisingly little evidence of such cheating or destabilization exists.

A team of biologists at the University of California, Riverside, has now found strong evidence of this cheating.  Focusing on the interaction between nitrogen-fixing bacteria, or rhizobia, and their legume hosts spanning about 530 miles of California habitat, the researchers found that natural selection in their study populations favors cheating rhizobia.

The study, appearing in Ecology Letters, is the first to uncover cheater strains in natural populations and show how natural selection favors them.

The researchers used a previously published database to quantify the landscape abundance of different rhizobial strains. They focused on naturally occurring populations of rhizobia in the genus Bradyrhizobium and the native annual plants, Acmispon strigosus, that these bacteria inhabit. Within these datasets they found that the fewer benefits the rhizobia provide to their host plants, the more common the rhizobia are.

“Our data show that natural selection favors cheating rhizobia, and support predictions that rhizobia can often subvert plant defenses and evolve to exploit hosts,” said Joel Sachs, a professor of biology in the Department of Evolution, Ecology & Organismal Biology, who led the research team.

Sachs explained that beneficial bacteria are increasingly appreciated to be key for human health as well as the productivity of crops and livestock. Little is understood, however, about how much these bacterial services vary in natural systems and the forces that modulate them.

“In crop plants, in particular, agronomists have attempted — and failed — for several decades to design crop biofertilizers based on beneficial bacteria,” he said. “Similar challenges have been faced in applying bacteria in other host systems — probiotics, for example, which rarely affect host microbes. Our dataset suggests a potential flaw in these approaches; the bacteria, with their own evolutionary interests, can destabilize these interactions.”

In their paper, the researchers show how benefits of bacterial symbionts vary over space and time, and how rapidly these systems can evolve.

“We often view the services of bacteria as fixed, but this is not at all true,” Sachs said. “Just as each human varies a great deal in almost any trait we can measure, bacterial populations are even more highly variable. Understanding this variation and its drivers will be key to usefully harnessing these bacteria for our own purposes.”

Already, his team is actively working to better understand how beneficial bacteria can be applied to improve plant growth. Preliminary data show that it is crucial to carefully select among bacterial variants to avoid using harmful strains.

“Simply applying beneficial bacteria to a crop is often not going to be sufficient since exploitative strains are expected to be lurking within these populations,” Sachs said.

###

He was joined in the research by Kelsey A. Gano-Cohen (co-first author), Camille E. Wendlandt (co-first author), Peter J. Stokes, Mia A. Blanton, Kenjiro W. Quides, Avissa Zomorrodian, and Eunice S. Adinata.

The research was supported by a grant to Sachs from the National Science Foundation.

Media Contact
Iqbal Pittalwala
[email protected]

Tags: AgricultureBacteriologyBiodiversityBiologyEcology/EnvironmentEvolutionNutrition/NutrientsParasitologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

October 8, 2025

Patient Resistance to Nursing Procedures in China

October 8, 2025

TIM1+ Breg Cells Impact Heart Injury Recovery

October 8, 2025

Comparing Growth Impairment in Glycogen Storage Diseases

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1040 shares
    Share 416 Tweet 260
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Birds Flourish Despite Pollution from Persistent ‘Forever’ Chemicals

Medicaid Expansion Associated with Enhanced Long-Term Survival Rates in Cancer Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.