• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Georgetown researchers describe method to study real time cancer invasion

Bioengineer by Bioengineer
November 4, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Georgetown University, Courtesy JoVE

WASHINGTON — A research team at Georgetown Lombardi Comprehensive Cancer Center has described the steps, in both written and video format, that allow cancer investigators to track, in real time, cancer cell invasion and metastasis in transparent zebrafish embryos. Using these fish models, researchers can find answers to cancer questions in one to three days instead of months for the typical mouse model.

Because of this rapidity and the ability to image cancer movement in blood, investigators say the use of zebrafish embryos represent a significant advance in the understanding of cancer biology and experimental drug testing, and may, one day, lead to tumor assessment and treatment evaluation in patients.

The method and its implications, published online Nov. 3 in the Journal of Visualized Experiments (JoVE), "will be of a lot of interest to cancer researchers because it provides a hands-on, detailed description of a unique model system to study cancer cell vascular invasion," says the study's co-senior investigator, Anton Wellstein, MD, PhD, a Georgetown professor of oncology & pharmacology, and deputy director of the Georgetown Center for Cell Reprogramming.

"Invasion of the blood system is a significant step towards the metastatic spread of cancer cells, which is a significant threat to patients with cancer," he says. "This method uses human cancer cells in zebrafish and can reveal distinct invasive properties of cancer cells, help identify genes that drive vascular invasion as well as allow to test drugs that inhibit it."

Zebrafish — a tropical freshwater minnow commonly used in aquariums — has been widely used as a model organism in scientific research, but has only recently been adapted for use in studying cancer, says co-author Eric Berens, a PhD student in Wellstein's laboratory.

"It's being increasingly used in oncology research, but the technique, which has a lot of moving parts, hadn't been written up. We felt listing and filming the steps would encourage more scientists to use this wonderful tool to advance their investigations," he says.

Wellstein, Berens, and co-author Ghada Sharif, PhD, also a member of the Wellstein lab, worked with Eric Glasgow, PhD, who directs Georgetown's zebrafish laboratory, to articulate the method's steps. (Glasgow is co-senior investigator on the JoVE study.)

The video shows how fluorescent human cancer cells can be injected into developing embryos, and how 24-96 hours later, the ability of the cells to invade the blood and spread can be seen using fluorescence microscopy. The team tested seven different breast cancer cell lines to determine which invaded the blood system, and how aggressively.

"We can use these beautiful fluorescent images to see how invasive various human cancers are and whether they respond to drug treatment," Berens says.

Using the zebrafish model to uncover drivers of tumor aggression, the team has published two major studies in Oncogene. Wellstein was the corresponding author for both studies.

One study, led by Sharif and published in 2015, demonstrated that the ability of cancer cells to invade is influenced by the density at which those cells are grown. Another 2016 article, led by Berens, used a screening approach to identify unstudied genes that control cancer cell invasion and metastasis. Researchers found that keratin-associated protein 5-5 (Krtap5-5) is important for cancer cell invasion out of blood vessels.

"One could envision using this model system in the future to test how aggressive an individual person's cancer is, and what treatments might work best against it," Berens says.

###

The Georgetown facilities used in this study, the Microscopy & Imaging Shared Resource and the Zebrafish Shared Resource are partially supported by a grant from the National Cancer Institute (P30- CA051008). This work was also supported by two additional NCI grants (CA71508 and CA177466).

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center is designated by the National Cancer Institute as a comprehensive cancer center — the only cancer center of its kind in the Washington, DC area. A part of Georgetown University Medical Center and MedStar Georgetown University Hospital, Georgetown Lombardi seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Connect with Georgetown Lombardi on Facebook (Facebook.com/GeorgetownLombardi) and Twitter (@LombardiCancer).

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis — or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health. Connect with GUMC on Facebook (Facebook.com/GUMCUpdate), Twitter (@gumedcenter) and Instagram (@gumedcenter).

Media Contact

Karen Teber
[email protected]
@Gumedcenter

Home Page

Share14Tweet8Share2ShareShareShare2

Related Posts

blank

Microhaplotype Panel Advances Brazilian Human Identification

August 22, 2025
blank

Federated Learning Enhances Data Privacy in Battery SOH Prediction

August 22, 2025

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

August 22, 2025

NIH Grants Funding to Investigate Socio-Genomic Influences on Local Endometrial Cancer Survival Rates

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microhaplotype Panel Advances Brazilian Human Identification

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.