• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Picture release: Spiral growth

Bioengineer by Bioengineer
November 4, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Neha Bhatia/EMBL

This flower-like image shows a plant that is not developing quite right. It comes from a study in which scientists at EMBL and the University of Sydney unearthed the molecular feedback loop that creates the spiral pattern of leaves around a stem. The work is published today in Current Biology.

For centuries, artists, biologists and mathematicians have been inspired by the recurring patterns of the plant world: the exquisite symmetry of flowers, the sweeping spirals of seeds, spines and leaves. The plant in this image, however, has gotten its spiral wrong. Instead of several leaves spaced out in a spiral pattern, it has two continuous, spiral-shaped organs developing.

How do plants create such amazing patterns? Based on mathematical modelling and computer simulations, scientists know that if plant organs like leaves or petals are produced at regular intervals, these complex patterns can automatically emerge. So how do plants produce organs at regular intervals? Biologists knew the answer involved cells in the growing plant coordinating with their neighbours to transport the plant hormone auxin to sites where it accumulates. At each auxin hotspot, a new leaf begins to grow. But how are these hotspots formed and maintained?

Neha Bhatia, a PhD student in Marcus Heisler's lab at EMBL, found that if a cell detects a lot of auxin, it makes neighbouring cells transport the hormone towards that cell. This creates a hotspot. At the same time, it depletes auxin levels in the surrounding area, so another hotspot can only form a fair distance away, where that cell's influence is no longer felt. This, the EMBL scientists conclude, is what creates the regular spacing between auxin hotspots, and consequently between leaves.

Surprisingly, Bhatia found that this feedback loop has to be active not just in the cells on the surface of the growing plant, but also in the cells below. If only surface cells can respond to auxin, the auxin seems to build up too much and starts to leak sideways. This gives rise to the wonderful spiral shaped organs in the picture. The EMBL scientists speculate that this could be what happens in some species of Cereus cacti, whose leaves are spiral-shaped.

###

Media Contact

Sonia Furtado Neves
[email protected]
@EMBLorg

http://www.embl.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025
Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.