• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study informs debate on predator-prey relationships

Bioengineer by Bioengineer
March 7, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Stirling

Experts have shed new light on the relationship between predators and their prey after studying how elk responded to the risk posed by grey wolves in an American national park.

Co-led by the University of Stirling, new research used global positioning system (GPS) tracking technology to monitor the behaviour of both species in Yellowstone National Park – which spans Wyoming, Montana, and Idaho – where wolves were reintroduced in the mid-1990s.

Earlier studies have suggested that elk – the main prey of grey wolves in Yellowstone – modified their behaviour to avoid specific areas or times when the risk of being hunted was high. However, the latest research has found “little evidence” of elk responding to wolf predation risk.

Dr Jeremy Cusack, of the Faculty of Natural Sciences at Stirling, led the study, published in the Journal of Animal Ecology.

The project was a collaboration with the University of Oxford, Utah State University, and the National Park Service in the United States. The team collected movement data between 2012 and 2016 using GPS collars placed on individual female elk and at least one member of each wolf pack, in the northern section of Yellowstone. The collars recorded the location of the animals every hour, providing comprehensive data on how they used the landscape.

“Since the reintroduction of wolves to Yellowstone National Park in the mid-1990s, there has been a great deal of research into how elk respond to the risk of predation posed by grey wolves,” explained Dr Cusack.

“Earlier studies, investigating the vigilance of elk in areas with and without wolves, suggested elk modified their behaviour depending on how predation risk varied across a landscape. Recent studies have introduced a temporal component – in other words, elk might avoid risky areas at times when wolves are actively hunting.

“However, our research found little evidence for any kind of movement response by elk to different measures of predation risk by grey wolves. The most marked behaviour – but still relatively small – was an avoidance of open vegetation during daylight hours, which weakly mirrors the result of a separate recent study. Overall, less than 10 percent of individual elk trajectories tested showed at least one response to predation risk.”

In addition, the team also tested different measures of predation risk: how intensively wolves used a given area; how much vegetation was in a given area; whether elk had previously been killed in that area; and whether wolves were present in the immediate vicinity.

Dr Cusack said: “In behavioural ecology, the extent to which fear of predation drives prey behaviour has always been very contentious. Some ecologists argue that prey are very responsive to predation risk, but others argue that other factors are more important to individual prey – such as finding food in winter – than constantly keeping an eye out for, or avoiding, predators. Elk, for example, are much larger than wolves and generally survive their encounters with them.

“Investigating how predators, including humans, affect their prey is a vital component of any natural ecosystem. Understanding these interactions brings us closer to figuring out how communities of species are structured.

“This can enable us to assess the health of systems that are impacted by human activities, and provides crucial knowledge to support efforts to re-wild degraded habitats and landscapes.”

###

The research, Weak spatiotemporal response of prey to predation risk in a freely interacting system, was funded by several organisations, including: the Natural Environment Research Council; National Science Foundation; Yellowstone Forever; The Tapeats Fund; Perkins-Prothro Foundation; and the National Park Service.

Media Contact
Lachlan Mackinnon
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/1365-2656.12968

Tags: BiologyEcology/EnvironmentForestry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Targeting UTI-causing E. coli with Phage Therapy

September 30, 2025
Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

September 30, 2025

Unraveling Gene Impact of Glucose on Anisakis Development

September 30, 2025

Mapping Safflower HD-ZIP Genes Under Drought Stress

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting UTI-causing E. coli with Phage Therapy

Hidden Burdens: Inborn Metabolic Disorders in LMICs

Optimized Features Enhance Lithium-Ion Battery Lifespan Predictions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.