• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brain scientists at TU Dresden examine brain networks during short-term task learning

Bioengineer by Bioengineer
November 3, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Holger Mohr et al.

This works especially efficient when we are guided by explicit instructions. A team of researchers at TU Dresden has now examined the underlying neural processes in a current imaging study. The results of the study are published today in the prestigious scientific journal Nature Communications under the title „Integration and segregation of large-scale brain networks during short-term task automatization".

Within the collaborative research center 940 'volition and cognitive control' sponsored by the DFG (German Science Foundation), the brain scientists Holger Mohr, Uta Wolfensteller, and Hannes Ruge from the Department of Psychology at Technische Universität Dresden (Germany) in collaboration with colleagues from the USA and Switzerland examined the neural processes responsible for the automatization of instruction-based tasks. Their research approach embraced the currently popular assumption that mental functions like memory or language do emerge from specific patterns of communication within and between subnetworks of the brain. Going beyond this basic assumption, it was examined whether a rapid reorganization of these communication patterns is possible – specifically during the rapid instruction-based automatization of novel tasks. Previous studies in this context mainly focused on long-term changes.

The results of this current study suggest that rapid instruction-based task automatization is facilitated by rapidly increasing communication between subnetworks associated with the transformation of visual information into motor responses. At the same time, this is accompanied by a release of network resources initially serving the controlled and attention-demanding implementation of the instructed task – while the so-called default mode network is increasingly decoupled from task-related networks. Together, these findings suggest that rapid instruction-based task automatization is indeed reflected by a rapid system-level reorganization of network communications distributed across the entire brain.

###

Please find the complete paper at: http://www.nature.com/articles/ncomms13217

https://tu-dresden.de/mn/psychologie/allgpsy/die-professur/mitarbeiter/utawolfensteller/agneuro

Media Contact

Holger Mohr
[email protected]
49-351-463-42432
@tudresden_de

http://tu-dresden.de/en

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

August 13, 2025
Optimizing Fuel Cell Parameters with AI Techniques

Optimizing Fuel Cell Parameters with AI Techniques

August 13, 2025

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

August 13, 2025

Twisted Bilayer MOFs Unlock Tailored Moiré Patterns, Driving Breakthroughs in Twistronics and Quantum Materials

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

Optimizing Fuel Cell Parameters with AI Techniques

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.