• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Overcoming cardiovascular disease with a magnetically-steerable guidewire microrobot

Bioengineer by Bioengineer
March 5, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: ©DGIST

DGIST research team succeeded in developing a microrobot that can reach the accurate location of cardiovascular disease such as the Chronic Total Occlusion by moving and steering the microrobot towards a desired direction inside complicated blood vessels. This research is expected to increase the success rate of treatment and shorten the time of cardiovascular disease surgery.

DGIST announced on February 27 that Professor Hongsoo Choi’s team in the Robotics Engineering Department developed the ‘Magnetically Controlled Microrobot’ that can enhance the success rate of CTO treatment among myocardial infarctions through a joint research with Professor Byung-Ju Yi’s team at Hanyang University and Professor Bradley J Nelson’s team at idgenössische Technische Hochschule Zürich in Switzerland.

Since the guidewire used for percutaneous coronary intervention , which opens up the obstructed blood vessels, is controlled manually by a surgeon to change its direction and location, the success rate and speed of surgery had depended on the surgeon’s skill. It had been difficult to control the exact location and direction as the surgeon had to manually set and push the guidewire with bent ends inside complex blood vessels or junction.

To overcome this limitation, Professor Choi’s team applied flexible and biocompatible polymer as well as neodymium magnet that can control the direction and location with as external magnetic field. Using this, the team developed a cylindrical microrobot with a diameter of 500? and length of 4mm and attached it at the end of guidewire. The team developed an attachable guidewire soft microrobot that can steer the guidewire towards a desired direction by controlling the microrobot with the external magnetic field and enable a rectilinear motion through Master-Slave System .

The research team also succeeded in an experiment which mathematically calculates and predicts the microrobot’s motion and penetrates complex blood vessels through the feedforward method to control the result, in order to realize flexible, nonlinear motions of microrobot. The team also succeeded in an experiment to reach a desired area in a 3D blood vessel model that imitates the coronary artery of heart and the biocompatibility of microrobot from a cell survival experiment.

The attachable guidewire microrobot developed by the research team enables rectilinear motions through precise control by magnetic field and Master-Slave system. This can reach a desired area inside the complex blood vessel much faster, which will help overcome the percutaneous coronary intervention of existing surgical method and increase the success rate and efficiency of surgery. It will also reduce the exposure of patient and surgeon to radiation from xray as well as blood vessel damage of patients because it can reach the disease part more quickly than the existing method.

Professor Hongsoo Choi in the Department of Robotics Engineering said “Compared to the existing method, using an attachable guidewire microrobot will shorten the time for heart disease surgery and increase the success rate by enabling the surgeon to find the cause of disease more accurately and faster for a stable surgery. Our research team will work harder to conduct follow-up research with related companies and develop products that can be used in medical sites.”

###

Meanwhile, this R&D result was published as a cover paper on ‘Soft Robotics‘, the most-renowned international journal in robot research, and was performed with the support by Ministry of Trade, Industry, and Energy as well as the Ministry of Science and ICT.

Media Contact
[email protected]
[email protected]

Original Source

https://www.dgist.ac.kr/site/en/html/sub06/060202.html?mode=V&no=72470b805b95582e498196d15647f5df

Related Journal Article

http://dx.doi.org/10.1089/soro.2018.0019

Tags: Biomechanics/BiophysicsNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.