• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Inflammation signals induce dormancy in aging brain stem cells

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In old age, the amount of stem cells in the brains of mice decreases drastically. The remaining ones protect themselves from completely vanishing by entering a state of dormancy, scientists from the German Cancer Research Center (DKFZ) have now reported in Cell. The old stem cells are hard to awaken, but once reactivated, they are just as potent as young ones. Their dormancy is promoted by inflammatory signals from the stem cells’ environment. Anti-inflammatory substances may therefore be a key to awakening the stem cells and stimulating repair processes in the brain in old age.

Stem cells in certain areas of the adult brain are capable of generating new nerve cells (neurons) for life. These stem cells are also activated in the wake of injury to the brain and, additionally, may form the cells of origin to specific brain tumors.

However, in the aging brain, the replenishment of young neurons diminishes. Scientists in the team of Ana Martin-Villalba, a stem cell researcher at the German Cancer Research Center (DKFZ) in Heidelberg, in collaboration with colleagues from the Universities of Heidelberg and Luxemburg, have now discovered a cause for this loss of function. They discovered that the amount of stem cells drastically declines as aging progresses. “This is because most stem cells disappear in the process of differentiating into mature brain cells and only a small portion of them generates new stem cells,” Martin-Villalba explains. “If they did not increasingly enter into a state of dormancy without dividing actively as the brain ages, the supply of stem cells in the brain of an old mouse would be completely exhausted. They are using the dormancy to gain time.”

Not only does the number of dormant stem cells increase in old age, they are also harder to awaken from their dormant state by emergency signals such as injury. But once awakened, they are just as potent as young stem cells in regenerating neurons.

The team found out that the dormancy appears to be promoted by inflammatory chemical messengers and signals of the key Wnt signaling chain which are transmitted from the stem cells’ immediate surroundings, called “niche”. When these signals are blocked using antibodies, the dividing activity of neural stem cells increases again and they provide more neurons for everyday life as well as for repair processes.

“The central finding of our work is that dormancy promoted by inflammation is a key characteristic of aging brain stem cells,” says Martin-Villalba. “However, drugs can be used to reduce inflammation. This may be an approach to stimulating the regeneration of neurons and initiating repair mechanisms in the brain in old age.”

###

Kalamakis Georgios, Brüne Daniel, Ravichandran Srikanth, Bolz Jan, Fan Wenqiang, Ziebell Frederik, Stiehl Thomas, Catalá-Martínez Francisco, Kupke Janina, Zhao Sheng, Llorens-Bobadilla Enric, Bauer Katharina, Limpert Stefanie, Berger Birgit, Christen Urs, Schmezer Peter, Mallm Jan Philipp, Berninger Benedikt, Anders Simon, Del Sol Antonio, Marciniak-Czochra Anna, Martin-Villalba Ana: Quiescence modulates stem cell maintenance 1 and regenerative capacity in the aging brain
CELL 2019, DOI: 10.1016/j.cell.2019.01.040

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Media Contact
Sibylle Kohlstädt
[email protected]
http://dx.doi.org/10.1016/j.cell.2019.01.040

Tags: Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.