• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How plants learned to save water

Bioengineer by Bioengineer
February 21, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Stephan Liebig

Tiny pores on the leaves of plants, called stomata, have a huge influence on the state of our planet. Through the stomata, plants absorb carbon dioxide, which is incorporated into carbohydrates, and release oxygen. But they also lose water through open pores, which can be life-threatening for plants in dry conditions.

Plants therefore have developed complex signalling pathways that optimize the opening width of stomata to match the environmental conditions. In response to changes in the availability of light, carbon dioxide and water, they can open or close these pores. How did the signalling pathways that are responsible for this regulation evolve? This is being investigated at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, in the team of the plant scientist Rainer Hedrich.

“We are currently collecting and analyzing data from different plant species,” says Professor Hedrich. He explains that this research also has relevance for agriculture: “Knowledge about the evolution of these signalling pathways could feed into breeding efforts to develop crops that can grow with less water.” After all, the majority of the drinking water supplied to plants via irrigation systems is lost through stomatal pores. In view of climate change, plant varieties that can cope well with drought are highly sought-after.

History of important genes reconstructed

In the journal Trends in Plant Science, JMU researchers Dr. Frances Sussmilch, Professor Jörg Schultz, Professor Hedrich, and Dr. Rob Roelfsema now summarize the current state of knowledge on the signalling pathways that plants use to regulate their water balance.

The Würzburg team has reconstructed the evolutionary history of important genes that control the movement of leaf pores in flowering plants. It turned out that most of these genes belong to old gene families that occur in all plant groups, including green algae. These gene families probably developed before the first plants colonized the land.

The researchers also found out that some specific genes that control the opening and closing of leaf pores in response to light and carbon dioxide probably only developed in seed plants or flowering plants after they had been separated in evolution from a common ancestor with ferns.

Specific signalling genes in adjustable guard cells

In their work, the JMU scientists look closely at the plants’ guard cells. These two cells surround each leaf pore. When hydraulic pressure rises in the guard cells, the pores open. If the pressure decreases, the pore closes.

In the guard cells of flowering plants, the products of certain key signalling genes have unique properties or are found in much higher concentrations than in the surrounding leaf cells. The specificity of these genes is likely important for controlling the hydraulic pressure in the guard cells.

The researchers have also examined related genes using available data for the moss Physcomitrella patens. “We found out that none of the moss genes of interest were specific for stomatal-bearing tissue, but instead all these genes were also expressed in tissues without these pores,” said Frances Sussmilch. Rob Roelfsema and Jörg Schultz add: “Signalling genes with specific roles in guard cells probably arose later in plant evolution after the divergence of mosses from an ancestor they share with flowering plants.”

###

Media Contact
Rob Roelfsema
[email protected]
49-931-318-6121

Original Source

https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/how-plants-learned-to-save-water/

Related Journal Article

http://dx.doi.org/10.1016/j.tplants.2019.01.002

Tags: BiologyBiomechanics/BiophysicsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.