• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Russian physicists trained the oscillatory neural network to recognize images

Bioengineer by Bioengineer
February 21, 2019
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Andrei Velichko

Physicists from Petrozavodsk State University have proposed a new method for oscillatory neural network to recognize simple images. Such networks with an adjustable synchronous state of individual neurons have, presumably, a dynamics similar to neurons in the living brain.

Oscillatory neural network is a complex interlacing of interacting elements (oscillators) that are able to receive and transmit oscillations of a certain frequency. Receiving signals of various frequencies from preceding elements, the artificial neuron-oscillator can synchronize its rhythm with these fluctuations. As a result, in the network, some of the elements are synchronized with each other (periodically and simultaneously activated), and other elements are not synchronized. In this manner, a space-time picture of the synchronization distribution is formed. It has commonly been assumed that such processes are responsible for the processing and transmission of information in the human brain, and therefore are of particular interest for the study.

The scientists of the Department of Electronics and Power Engineering of Petrozavodsk State University have set the goal of pattern recognition based on coupled oscillators networks implemented on vanadium dioxide structures. Physicists have developed a synchronization registration method with high sensitivity and selectivity. By applying it in practice, it is possible to create a network capable of recognizing images in the same way that biological neural systems do.

In the study, the input images in the form of 3×3 dimension tables were transmitted to the network by changing the supply currents, and currents changed the oscillation frequencies of oscillators. As a result, the network reacted to each received image in a specific dynamics. The idea of the new method was by selecting key network parameters to train the system to synchronize only for a specific input image, which means to recognize it.

The synchronization state of the output neuron-oscillator relative to the rhythm of the main neuron-oscillator was chosen as the output recorded signal. The authors demonstrated that synchronization can be observed not only at the fundamental frequencies, but also at their multiple parts (subharmonics). An increase in the number of synchronous states due to subharmonics is called a high order synchronization effect. Having simultaneously several states of synchronization, the neuron becomes multilevel neuron. Therefore, an oscillatory network of a small number of neurons can perform complex operations, such as speech, images and video recognition, and be capable of solving prediction, optimization, and control problems.

Using this property, the researchers managed to configure the network in a way that different input images caused different synchronization patterns of the oscillatory network. It was discovered that the network was able to recognize simultaneously up to 14 figures (by 3×3 dimension) out of 102 possible variants, while having only one oscillator at the output.

“In the future, compact neural network chips with nanoscale oscillators can be created on the basis of these networks. The distinctive feature of the neural network technology that we are developing is a fundamentally new information processing system. The effect of high order synchronization of pulsed signals allows utilization of multilevel neurons with a high degree of functionality. The advantage of such oscillatory neural networks is the prospect of creating neural networks using a wide variety of physical oscillators, including magnetic and electrical oscillators. At the same time, the trained network no longer needs computer calculations, and operates independently as a separate neural organism, ” says the principle investigator of the research grant, associate professor at Petrozavodsk State University, Andrei Velichko.

###

Media Contact
Andrei Velichko
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/electronics8010075

Tags: Chemistry/Physics/Materials SciencesComputer ScienceMental HealthMultimedia/Networking/Interface DesignSoftware Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.