• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pitt bioengineers create ultrasmall, light-activated electrode for neural stimulation

Bioengineer by Bioengineer
February 15, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Takashi D. Y. Kozai’s lab examines the use of the photoelectric effect on untethered implanted devices to mitigate damage done by current implant technology

IMAGE

Credit: J. Mater. Chem. B, 2015,3, 4965-4978 – Reproduced by permission of The Royal Society of Chemistry.


PITTSBURGH (February 15, 2019) … Neural stimulation is a developing technology that has beneficial therapeutic effects in neurological disorders, such as Parkinson’s disease. While many advancements have been made, the implanted devices deteriorate over time and cause scarring in neural tissue. In a recently published paper, the University of Pittsburgh’s Takashi D. Y. Kozai detailed a less invasive method of stimulation that would use an untethered ultrasmall electrode activated by light, a technique that may mitigate damage done by current methods.

“Typically with neural stimulation, in order to maintain the connection between mind and machine, there is a transcutaneous cable from the implanted electrode inside of the brain to a controller outside of the body,” said Kozai, an assistant professor of bioengineering in Pitt’s Swanson School of Engineering. “Movement of the brain or this tether leads to inflammation, scarring, and other negative side effects. We hope to reduce some of the damage by replacing this large cable with long wavelength light and an ultrasmall, untethered electrode.”

Kaylene Stocking, a senior bioengineering and computer engineering student, was first author on the paper titled, “Intracortical neural stimulation with untethered, ultrasmall carbon fiber electrodes mediated by the photoelectric effect” (DOI: 10.1109/TBME.2018.2889832). She works with Kozai’s group – the Bionic Lab – to investigate how researchers can improve the longevity of neural implant technology. This work was done in collaboration with Alberto Vasquez, research associate professor of radiology and bioengineering at Pitt.

The photoelectric effect is when a particle of light, or a photon, hits an object and causes a local change in the electrical potential. Kozai’s group discovered its advantages while performing other imaging research. Based on Einstein’s 1905 publication on this effect, they expected to see electrical photocurrents only at ultraviolet wavelengths (high energy photons), but they experienced something different.

“When the photoelectric effect contaminated our electrophysiological recording while imaging with a near-infrared laser (low energy photons), we were a little surprised,” explained Kozai. “It turned out that the original equation had to be modified in order to explain this outcome. We tried numerous strategies to eliminate this photoelectric artifact but were unsuccessful in each attempt, so we turned the ‘bug’ into a ‘feature.'”

“Our group decided to use this feature of the photoelectric effect to our advantage in neural stimulation,” said Stocking. “We used the change in electrical potential with a near-infrared laser to activate an untethered electrode in the brain.”

The lab created a carbon fiber implant that is 7-8 microns in diameter, or roughly the size of a neuron (17-27 microns), and Stocking simulated their method on a phantom brain using a two-photon microscope. She measured the properties and analyzed the effects to see if the electrical potential from the photoelectric effect stimulated the cells in a way similar to traditional neural stimulation.

“We discovered that photostimulation is effective,” said Stocking. “Temperature increases were not significant, which lowers the chance of heat damage, and activated cells were closer to the electrode than in electrical stimulation under similar conditions, which indicates increased spatial precision.”

“What we didn’t expect to see was that this photoelectric method of stimulation allows us to stimulate a different and more discrete population of neurons than could be achieved with electrical stimulation.” said Kozai, “This gives researchers another tool in their toolbox to explore neural circuits in the nervous system.

“We’ve had numerous critics who did not have faith in the mathematical modifications that were made to Einstein’s original photoelectric equation, but we believed in the approach and even filed a patent application” (patent pending:US20170326381A1), said Kozai. “This is a testament to Kaylene’s hard work and diligence to take a theory and turn it into a well-controlled validation of the technology.”

Kozai’s group is currently looking further into other opportunities to advance this technology, including reaching deeper tissue and wireless drug delivery.

###

Media Contact
Leah Russell
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2019/Kozai-photoelectric/

Related Journal Article

http://dx.doi.org/10.1109/TBME.2018.2889832

Tags: Biomedical/Environmental/Chemical EngineeringneurobiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Targeting DPP4: Ferroptosis and Endometrial Receptivity in PCOS

Targeting DPP4: Ferroptosis and Endometrial Receptivity in PCOS

December 23, 2025
Y-Linked Variation Drives Sexual Dimorphism in Bass

Y-Linked Variation Drives Sexual Dimorphism in Bass

December 23, 2025

Sulforaphane: Sources, Extraction, Bioactivity, and Bioavailability

December 23, 2025

Carbonic Anhydrase Nce103 Drives Candida Auris Resistance

December 23, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Antibiotics Enhance ART Success in TPOAb-Positive Endometritis

SII Predicts Air Enema Treatment Outcomes in Children

New Enterostomy Tool Enhances Nursing Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.