• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How poppy flowers get those vibrant colours that entice insects

Bioengineer by Bioengineer
February 8, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Groningen

With bright reds and yellows – and even the occasional white – poppies are very bright and colorful. Their petals, however, are also very thin; they are made up of just three layers of cells. University of Groningen scientists Casper van der Kooi and Doekele Stavenga used microscopy and mathematical models describing how light interacts with petals to find out how the vibrant colors are created. The results will be included in a special edition of the Journal of Comparative Physiology A, which focuses on the relationship between insects and flowers.

Van der Kooi’s main research focus is the evolution of flower color, and the interaction between flower color and pollinators. This led him to investigate how petals produce their visual signals. He explains why the flowers of poppies (Papaver, Meconopsis and related species) are interesting: ‘The common poppy is an extreme case, it has very thin petals that nevertheless cause a very high scattering of light. Poppies also contain high concentrations of pigments.’

Jigsaw pieces

The researchers collected petals from different poppy species and studied their structures using different techniques. They discovered that the pigment was only present in the two outer cell layers and not in the middle layer. The pigmented cells had a fascinating shape, with many invaginations that made them look like complicated jigsaw pieces. ‘This creates many air-filled gaps between the cells, which cause the reflection of light on the cell/air boundary’, says Van der Kooi.

Furthermore, the petals contained huge amounts of pigment. ‘They are among the highest concentrations that I have ever measured in any flower.’ Indeed, the characteristic black markings at the center of some poppy flowers are caused by extreme concentrations of red pigment. Van der Kooi concludes that dense pigmentation together with strong scattering causes the striking poppy colors in the red parts of the petal.

Sexual mimicry

The new findings can be linked to previous work on poppy color evolution. Intriguingly, poppies in the Middle East reflect no ultraviolet light, while the same species in Europe do. This difference may be due to their preferred pollinators. ‘In Europe, poppies are pollinated mostly by bees, which cannot see red very well; however, they will pick up ultraviolet.’ In contrast, poppies in the Middle East are pollinated by beetles that do see red colors.

‘Moreover, previous studies have shown that the black spots at the heart of some poppies mimic the presence of a female beetle. This is a way for the flowers to attract male beetles. A case of sexual mimicry, as occurs in other plants such as orchids’, explains Van der Kooi.

Air gaps

The next question will be how these jigsaw-like cells and the air gaps that cause the efficient scattering have evolved. ‘These cell shapes are commonly present in leaves, so that might be a clue.’ Furthermore, results suggest that poppies evolved ultraviolet signals when they began growing in more northern regions. It makes the evolutionary history of these brightly colored flowers an interesting object of study.

###

The paper by Van der Kooi and Stavenga will be included in a special edition of the Journal of Comparative Physiology A, edited by Friedrich Barth (University of Vienna). This special edition, with the title Insects and Flowers. New insights into an old partnership, is due to appear in print late this spring. The paper has already been published online.

Reference: CJ van der Kooi & DG Stavenga (2019) Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. Journal of Comparative Physiology A.

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/news/2019/02/20190208_vdkooi

Related Journal Article

http://dx.doi.org/10.1007/s00359-018-01313-1

Tags: BiologyEcology/EnvironmentEvolutionPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

September 17, 2025
Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025

Functional Archaellum Structure in Chloroflexota Bacteria

September 17, 2025

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reindeer Grazing Helps Reduce Forest Carbon Emissions Amid Winter Climate Change

Needle-Free Vaccine Delivery Achieved in Mice Through Skin Stretching Technique

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.