• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An elegant mechanism

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo: Working groups Becker and Pfanner


The research labs of the associate professor Dr. Thomas Becker and Prof. Dr. Nikolaus Pfanner from the Institute for Biochemistry and Molecular Biology at the University of Freiburg discovered a function of the metabolite channel of the mitochondrial outer membrane in protein transport. The researchers published their findings in Molecular Cell.

Mitochondria play a fundamental role for the metabolism of the cell. They produce the main energy for cellular functions and are therefore known as powerhouse of the cell. Defects in mitochondrial metabolism cause a number of severe diseases of the heart muscle or nerve systems. Mitochondrial function depends on the exchange of metabolites with the surrounding cell. Therefore, metabolites have to be transported across the two surrounding membranes. The voltage-dependent anion channel porin/VDAC allows transfer of metabolites across the outer membrane. The inner membrane is equipped with specific transporters, the carrier proteins, which transport metabolites across the inner membrane.

Mitochondria further depend on the import of about 1.000 different proteins from the cytosol. The translocase of the outer membrane, also termed TOM complex, forms the entry gate for the precursor proteins. The import of carrier proteins is particularly important for mitochondrial metabolism. Carrier precursors pass the outer membrane via the TOM channel. Subsequently, helper proteins, the small TIM proteins, guide the precursors to the inner membrane. The carrier translocase, the TIM22 complex, integrates the precursors into the inner membrane. How the single transport steps of the carrier import pathway are connected to each other, was not known.

Researchers from the collaborative research center “Functional Specificity by Coupling and Modification of Proteins”, the research training group “Transport Across and Into Membranes”, and the cluster of excellence CIBBS Center for Integrative Biological Signalling at the University of Freiburg discovered an unexpected function of the metabolite channel porin/VDAC in protein import into mitochondria. Dr. Lars Ellerieder from Thomas Becker`s research lab showed that porin/VDAC stimulates the import of carrier proteins into the inner membrane. The function of porin/VDAC in protein transport occurs independently of its channel activity. Instead, porin/VDAC acts as coupling factor. The proteins binds to carrier precursors in the intermembrane space, to the TOM complex and the carrier translocase. Thus, porin/VDAC spatially links the single transport steps and thereby stimulate import of carrier proteins.

The researchers demonstrate that mitochondrial metabolite and protein transport are connected: “The role of porin/VDAC in protein transport could represent an elegant mechanism to fine-tune import of carrier proteins and therefore eventually metabolite transport to meet the requirements of the cell”, explains Becker.

###

Original publikation:

Ellenrieder, L., Dieterle, M.P., Doan, K.N., Mårtensson, C.U., Floerchinger, A., Campo, M.L., Pfanner, N., and Becker, T. (2019): Dual role of mitochondrial porin in metabolite transport across the outer membrane and protein transfer to inner membrane. In: Molecular Cell.

Media Contact
Dr. Thomas Becker
[email protected]
49-761-203-5243

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2018.12.014

Tags: BiochemistryBiologyCell BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Evaluating Sex Differences in 5xFAD Alzheimer’s Model

December 17, 2025
Skink’s Sex Chromosome Compensation Unaffected by Sex Phenotype

Skink’s Sex Chromosome Compensation Unaffected by Sex Phenotype

December 17, 2025

Pilot Extraction of Propolis Bioactives via Subcritical Solvent

December 17, 2025

Decoding Protein-Coding Genes: A Comparative Analysis

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary rGO/CeFe2O4 Nanohybrid: Multi-Functional Applications Explored

Enhanced Leuprolide Acetate Delivery via SNEDDS Technology

AI-Driven SPOT Imaging Enhances Myocardial Scar Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.