• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers create 'shortcut' to terpene biosynthesis in E. coli

Bioengineer by Bioengineer
January 16, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from North Carolina State University have developed an artificial enzymatic pathway for synthesizing isoprenoids, or terpenes, in E. coli. This shorter, more efficient, cost-effective and customizable pathway transforms E. coli into a factory that can produce terpenes for use in everything from cancer drugs to biofuels.

Terpenes are a large class of naturally occurring molecules that are useful in industries ranging from pharmaceuticals and cosmetics to food and biofuels. In nature, terpenes are found in plants and microbes; for example, lycopene – which gives tomatoes their color – is a terpene.

Since it isn’t practical to extract these molecules directly from their natural sources, scientists can use biosynthesis to produce them. However, biosynthesizing terpenes has traditionally proven challenging.

“Terpenes are difficult to biosynthesize because nature’s methods for making the building blocks of these molecules are lengthy, complicated and involve enzymes that are difficult to engineer,” says Gavin Williams, associate professor of chemistry at NC State and lead author of a paper describing the work. “These difficulties in turn make it hard to engineer microbes to manufacture these molecules in large amounts.”

Williams works with E. coli, inserting enzymatic pathways into the bacteria that transform them into tiny molecular production factories. With former Ph.D. student Sean Lund, and current graduate student Rachael Hall, Williams designed an artificial pathway for terpene synthesis that utilizes only two enzymes, rather than the six or seven that occur in natural pathways.

“Nature uses approximately two routes for terpene synthesis, and each consists of six or seven enzymes,” Williams says. “We created a third route – a shortcut – with two enzymes that occur in nature, but that aren’t normally involved in this pathway.”

One of the key enzymes Williams and his team used – an acid phosphatase (PhoN) -normally removes phosphates. But in the artificial pathway, this enzyme cleverly performs the reverse reaction. “PhoN is particularly useful here, due to its promiscuous nature,” Williams says. “Promiscuity in enzymes means that they can carry out the same transformation on many different molecules.”

The team engineered E. coli to produce several different varieties of terpene with the simplified pathway, including lycopene. They found that the new pathway was equally as productive as longer, more difficult-to-engineer pathways currently in use.

“This simple, prototypical pathway and strain is just as effective as those that have been extensively engineered in manufacturing the molecules of interest,” Williams says. “And because the pathway is promiscuous, it’s customizable.”

Next steps for the researchers include using the pathway to make terpenes that are new to nature for use in compounds that are too expensive to manufacture with current methods.

###

The work appears in ACS Synthetic Biology and was supported in part by the National Institutes of Health (grant GM104258).

Note to editors: An abstract follows.

“An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism”

DOI: 10.1021/acssynbio.8b00383

Authors: Sean Lund, Rachael Hall, and Gavin Williams, North Carolina State University

Published: ACS Synthetic Biology

Abstract:

Isoprenoids are constructed in nature using hemiterpene building blocks that are biosynthesized from lengthy enzymatic pathways with little opportunity to deploy precursor-directed biosynthesis. Here, an artificial alcohol-dependent hemiterpene biosynthetic pathway was designed and coupled to several isoprenoid biosynthetic systems, affording lycopene and a prenylated tryptophan in robust yields. This approach affords a potential route to diverse non-natural hemiterpenes and by extension isoprenoids modified with non-natural chemical functionality. Accordingly, the prototype chemo-enzymatic pathway is a critical first step towards the construction of engineered microbial strains for bioconversion of simple scalable building blocks into complex isoprenoid scaffolds.

Media Contact
Tracey Peake
[email protected]
919-515-6142

Related Journal Article

https://news.ncsu.edu/2019/01/williams-terpene-biosynthesis/
http://dx.doi.org/10.1021/acssynbio.8b00383

Tags: BacteriologyBiochemistryBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesPharmaceutical ChemistryPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.