• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Childhood stress of mice affects their offspring behavior

Bioengineer by Bioengineer
January 8, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Russian neuroscientists discovered that the stress experienced by mice during their first weeks of life, affects not only them but also their offspring. The obtained data will help to understand how negative experience in the early period of life affects the mammalian brain. The results are published in Genes, Brain and Behavior.

Separation from mother is a common early stress model for experimental animals. It is known that mice and rats separated from their mothers during the first weeks of life demonstrate more disturbing behavior and reduced learning abilities compared to their relatives. Although the behavioral consequences of such a negative experience are well studied, it is still not known what molecular and structural changes in the brain are associated with them.

Neurobiologists from Russia suggested that memory and learning deterioration due to early stress is associated with impaired development of the hippocampus. This part of the brain is involved in the memory formation and plays an important role in responding to stress and in regulating the level of anxiety. In one of the hippocampus structures, the dentate gyrus, the formation of new neurons continues even in adult animals. Therefore, hippocampus disorders may lead to many behavioral and cognitive pathologies.

To test their hypothesis, the scientists conducted several successive experiments on female mice. At the first stage, researchers raised three groups of mice. The mice from the first group in the first two weeks of life were daily separated from their mother for three hours, from the second group for fifteen minutes. The third group was the control animals not subjected to any stress. Then all three groups passed learning and memory tests. Several animals from each group were used to study brain tissue while others were used in the third experiment. Once each of them acquired offspring, the scientists checked their behavior.

Behavioral tests showed equal ability to learn in mice from experimental and control groups. Although spatial memory of animals from the first group, which in the first days of life were separated for a long time from their mother, was worse. In addition, these mice showed a less pronounced exploratory behavior when colliding with a new object and had 12% fewer neurons in the hippocampus. Moreover, the scientists have found a noticeable difference in the level of maternal care between different groups of animals which affected their offspring.

“The results of the study confirm that separation from mother during the first two weeks of life adversely affects the development of mice. They reveal a deterioration in memory and learning, maternal behavior is changing,” says Natalia Bondar, one of the authors of the work, a senior researcher at the laboratory of the regulation of gene expression at the Institute of Cytology and Genetics, SB RAS. “The most interesting result is the behavioral changes in the second generation of mice, related to their sex. It is unclear what mechanisms change mice offspring behavior. It is important to explore the changes associated with early stress at both the behavioral and molecular levels, as this will allow you to find ways to reduce its negative effect. ”

###

Media Contact
Natalia Bondar
[email protected]
http://dx.doi.org/10.1111/gbb.12541

Tags: BiologyCell Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

August 21, 2025
CRISPR Screens Reveal GATOR1 as Tumor Suppressor

CRISPR Screens Reveal GATOR1 as Tumor Suppressor

August 21, 2025

Phantom Limb Research Transforms Our Understanding of Brain Function

August 21, 2025

Pediatric AKI: Biomarkers and AI Transform Detection

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

Electron Flow Matching Advances Reaction Mechanism Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.