• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers make important discovery for 'smart' films and encapsulation

Bioengineer by Bioengineer
January 7, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Matt Cashore/University of Notre Dame


A study from the University of Notre Dame has found that the properties of a material commonly used to create conductive or protective films and encapsulate drug compounds – and the conditions in which this material will disassemble to release that medication – may be different than initially thought.

Published in the Journal of the American Chemical Society, the study aimed to identify the conditions under which polyelectrolyte complexes, or PECs, would assemble and stay assembled. The researchers found new, important differences between strong and weak PECs. 

“The mechanism of weak PECs is completely different than that of strong PECs,” said Jonathan Whitmer, assistant professor in the Department of Chemical and Biomolecular Engineering and principal investigator for the study. “During our research, we found that when each of the weak polyelectrolytes came together in a solution, the presence of an oppositely charged polymer resulted in a strong pKa shift, enabling both polyelectrolytes to become highly charged and to stay stable. On the contrary, pH has relatively little influence on the charge and assembly of strong PECs, whose strong binding to salt ions determines most of their assembly.”

Weak PECs have been studied for many uses, including as a material to create capsules that hold medications. Weak PECs have a unique ability to bond and release in certain environments, but Whitmer’s team found that pH affected the overall assembly of weak PECs, as well as the conditions in which these materials may release.

“This study completely changes our perspective on the formation of weak PECs and how this material can be used,” said Whitmer, an affiliated member of NDnano. “Not only does this study point out physical mechanisms that will enable us to engineer better PECs, but it also has the potential to improve how this material can be utilized in industry, including the ‘smart’ encapsulation and delivery of medications, thin conductive materials and protective coatings.” 

In conducting the study, Whitmer and his team also developed a novel simulation algorithm. This algorithm allowed the researchers to analyze certain aspects of weak PECs that were not possible before, including the proper replication of solution conditions. 

###

The first author on the study is Vikramjit Rathee, Department of Chemical and Biomolecular Engineering graduate student. Additional collaborators include Hythem Sidky, a former chemical and biomolecular engineering doctoral student and now a postdoctoral researcher at the University of Chicago, and Ben Sikora, former postdoctoral scholar in the Whitmer lab and currently employed at Honeywell FM&T. The study was supported by the Midwest Integrated Center for Computational Materials, which is funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division, and by startup funds provided by Notre Dame.

The Center for Nano Science and Technology (NDnano) at the University of Notre Dame promotes collaborative research in science and engineering to address unsolved scientific and technical questions with an aim to promote the greater good. NDnano is where Notre Dame faculty, researchers and students meet to broaden understanding, discuss multidisciplinary research opportunities and shape future research directions. To learn more about NDnano, visit nano.nd.edu.

Media Contact
Jessica Sieff
[email protected]
574-631-3933

Original Source

https://news.nd.edu/news/researchers-make-important-discovery-for-smart-films-and-encapsulation/

Related Journal Article

http://dx.doi.org/10.1021/jacs.8b08649

Tags: Biomedical/Environmental/Chemical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.