• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fruit flies help to shed light on the evolution of metabolism

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Diet choice of animal species is highly variable. Some are specialists feeding only on one food source, such as a sugar-rich fruit or protein-rich meat. Other species, like humans, are generalists that can feed on different kinds of food sources.

Because of these differences, animal species ingest different amounts of macronutrients, like carbohydrates and amino acids. It is conceivable that the metabolism has to match the diet choice of each species. However, we understand poorly the evolution of animal metabolism – what are the underlying genetic changes and how these changes define the optimal nutrient composition for a given species.

The research group led by Associate Professor Ville Hietakangas at the University of Helsinki have studied the evolution of metabolism by using two very closely related fruit fly species.

The first one of them is a generalist, Drosophila simulans, which feeds on varying fruits and vegetables, which typically contain a high amount of sugars. The second one is Drosophila sechellia, which has specialized to feed on one fruit, Noni, Morinda citrifolia, which has low sugar content.

“We found pretty dramatic metabolic differences between these species. D. sechellia larvae, that are not exposed on sugar in nature, were not able to grow when placed on a sugar-rich diet, while D. simulans had no problems handling dietary sugar,” explains Hietakangas.

The close relatedness of the fruit fly species allowed the scientist interbreed the species, to make hybrids that were largely genetically like D. sechellia, but contained those genomic regions of D. simulans that were needed for sugar tolerance.

“The ability to analyze hybrid animals was the key advantage of our study. This way we could not only rely on correlating the findings but were able to identify genetic changes that were causally important. We also could tell that sugar tolerance comes with a cost. D. simulans and the sugar tolerant hybrids survived poorly on a low nutrient diet. This suggests that D. sechellia has evolved to survive on a low nutrient environment, which has required rewiring the metabolism in a way that has made feeding on high sugar impossible,” says Hietakangas.

This study opens up many interesting questions, also related to humans. In the future, it will be interesting to explore whether human populations that have different dietary histories, for example experiencing extremely limited nutrition for many generations, may respond differently to modern diets rich in sugars.

###

Media Contact
Ville Hietakangas
[email protected]

Related Journal Article

https://elifesciences.org/articles/40841
http://dx.doi.org/10.7554/eLife.40841

Tags: BioinformaticsBiologyCell BiologyEvolutionGeneticsMetabolism/Metabolic DiseasesNutrition/NutrientsPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025
Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025

The Science Behind Women’s Longevity: Why They Outlive Men

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Effective Strategies for Preventing Chainsaw-Related Injuries

Endocervical Curettage Detects CIN2+ in Postmenopausal Women

Can AI Influence You to Adopt Veganism—or Engage in Self-Harm?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.