• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

3D printed insoles offers new hope for patients with diabetes

Bioengineer by Bioengineer
June 25, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Staffordshire University claim that new 3D printed insoles can significantly improve the foot health of people suffering with diabetes.

IMAGE

Credit: Staffordshire University

Scientists from Staffordshire University claim that new 3D printed insoles can significantly improve the foot health of people suffering with diabetes.

This study offers hope for millions of patients with diabetes who are at risk of developing foot ulcers, which in many cases end up in amputation. It presents the first quantitative evidence in support of optimised cushioning in diabetic footwear as part of standard clinical practice.

In their latest paper [‘Optimised cushioning in diabetic footwear can significantly enhance their capacity to reduce plantar pressure’] published in Gait and Posture, researchers conclude that selecting the correct cushioning stiffness in footwear can significantly reduce pressures experienced on the feet which can lead to ulcers and other painful complications.

In the study carried out in Malta, 15 participants with diabetic foot disease were asked to walk in footwear fitted with made to measure 3D-printed insoles designed by the Centre for Biomechanics and Rehabilitation Technologies (CBRT) at Staffordshire University. These footbeds were used to change the stiffness of the entire sole across a spectrum of very soft to very stiff.

Dr Chatzistergos, Associate Professor at CBRT and the lead author of ths study said: “The optimum stiffness is clearly related to the patient’s body mass index (BMI). This study adds to our earlier findings and concludes that stiffer materials are needed for people with a higher BMI.”

Collaborators Dr Alfred Gatt and Dr Cynthia Formosa from the University of Malta and Visiting Fellows at CBRT provided clinical support for this study and led the experiments in Malta. Dr Gatt noted: “We hope that the results reported within this study will generate interest amongst all professionals managing this debilitating condition.”

Further work is now underway to develop a method to help professionals identify the optimum cushioning stiffness on a patient-specific basis. Professor Nachi Chockalingam, Director of CBRT and a co-inventor of the technology said “With numerous patients losing their limbs to diabetic foot disease, our research will help clinicians effectively manage this disease.”

###

Media Contact
Amy Platts
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.gaitpost.2020.05.009

Tags: BiologyBiomechanics/BiophysicsDiabetesOrthopedic Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

Antisense Therapy Reverses Developmental Defects in SMA Organoids

Black Soldier Fly Larvae Boost African Catfish Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.