• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

3D modelling identifies nutrient exchange in the human placenta

Bioengineer by Bioengineer
April 17, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New three-dimensional imaging of the human placenta has been developed to help understand the reasons for fetal growth restriction – a condition which affects thousands in the UK alone.

IMAGE

Credit: The University of Manchester

New three-dimensional imaging of the human placenta has been developed to help understand the reasons for fetal growth restriction – a condition which affects thousands in the UK alone.

Across all species of mammals, vital life-giving nutrients are transported around the body by complex networks of blood vessels. Despite the importance of these networks, there is still relatively little known about the physical factors which determine the transport of solutes such as oxygen to tissues and organs.

Now, new findings published today in Science Advances, detail three-dimensional imaging research by a group of scientists at The University of Manchester and St Mary’s Hospital. The research has opened up understanding about this vital life-sustaining process by mathematically modelling the human placenta.

The placenta is a life-support system for a growing fetus. The placenta contains numerous terminal villi, small structures containing disordered networks of fetal capillaries that are surrounded by maternal blood.

The placenta is unique in that it performs the diverse roles of several organs at once. In particular it allows the exchange of oxygen and vital nutrients between a mother and her developing fetus. However, the importance of the placenta in conditions such as fetal growth restriction, a condition which affects 35,000 pregnancies annually in the UK alone, remains poorly understood.

Now a specialist team of scientists made up of mathematicians, physicists, physiologists and clinical consultants, have used 3D imaging to help model some of the complex processes performed by the placenta.

Dr Igor Chernyavsky, MRC & Presidential Research Fellow and lead author said: “In our new study we show how the irregular three-dimensional structure of a terminal villus determines its capacity to exchange solutes such as oxygen between mother and fetus.

“Combining image analysis and computational fluid dynamics, we can now quantify mathematically the exchange capacity of individual terminal villi. We now anticipate that this advance will aid the development of larger-scale computational models of placental function. We hope that our new understanding of the role of placental geometry in fetal development will help clinicians address diseases where placental structure is compromised.”

###

Media Contact
Ben Robinson
[email protected]

Tags: Algorithms/ModelsBioinformaticsDevelopmental/Reproductive BiologyMathematics/StatisticsNutrition/Nutrients
Share12Tweet7Share2ShareShareShare1

Related Posts

Exercise Lactate Suppresses ccRCC via CNDP2

Exercise Lactate Suppresses ccRCC via CNDP2

July 31, 2025
Maternal Emulsifiers Impact Offspring Gut, Disease Risk

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

July 31, 2025

KDM7A Regulates Neural Differentiation via FGF4

July 31, 2025

Reducing Roadway Fatalities: The Science of Shared Responsibility and Innovative Safety Solutions

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exercise Lactate Suppresses ccRCC via CNDP2

Rising Overtopping Risks for U.S. Dams Revealed

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.