• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

3D bioprinting of living structures with built-in chemical sensors

Bioengineer by Bioengineer
October 1, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Anja Lode, TU Dresden

An international team of researchers led by Professor Michael Kühl at the Department of Biology, University of Copenhagen has just published a breakthrough in 3D bioprinting. Together with German colleagues at the Technical University of Dresden (Centre for Translational Bone, Joint and Soft Tissue Research), Professor Kühls group implemented oxygen sensitive nanoparticles into a gel material that can be used for 3D printing of complex, biofilm and tissue like structures harboring living cells as well as built-in chemical sensors. The work has just been published in the leading materials science journal, Advanced Functional Materials.

Kühl explains: "3D printing is a wide spread techniques for producing object in plastic, metal, and other abiotic materials. Likewise, living cells can be 3D printed in biocompatible gel materials (bioinks) and such 3D bioprinting is a rapidly developing field, e.g. in biomedical studies, where stem cells are cultivated in 3D printed constructs mimicking the complex structure of tissue and bones. Such attempts lack on line monitoring of the metabolic activity of cells growing in bioprinted constructs; currently, such measurements largely rely on destructive sampling. We have developed a patent pending solution to this problem."

The group developed a functionalized bioink by implementing luminescent oxygen sensitive nanoparticles into the print matrix. When blue light excites the nanoparticles, they emit red luminescent light in proportion to the local oxygen concentration – the more oxygen the less red luminescence. The distribution of red luminescence and thus oxygen across bioprinted living structures can be imaged with a camera system. This allows for on-line, non-invasive monitoring of oxygen distribution and dynamics that can be mapped to the growth and distribution of cells in the 3D bioprinted constructs without the need for destructive sampling.

Kühl continues: "It is important that the addition of nanoparticles doesn't change the mechanical properties of the bioink, e.g. to avoid cell stress and death during the printing process. Furthermore, the nanoparticles should not inhibit or interfere with the cells. We have solved these challenges, as our method shows good biocompatibility and can be used with microalgae as well as sensitive human cell lines."

The recently published study demonstrates how bioinks functionalized with sensor nanoparticles can be calibrated and used e.g. for monitoring algal photosynthesis and respiration as well as stem cell respiration in bioprinted structures with one or several cell types.

"This is a breakthrough in 3D bioprinting. It is now possible to monitor the oxygen metabolism and microenvironment of cells on line, and non-invasively in intact 3D printed living structures" says Prof. Kühl. "A key challenge in growing stem cells in larger tissue- or bone-like structures is to ensure a sufficient oxygen supply for the cells. With our development, it is now possible to visualize the oxygen conditions in 3D bioprinted structures, which e.g. enables rapid testing and optimization of stem cell growth in differently designed constructs."

The team is very interested in exploring new collaborations and applications of their developments.

Kühl ends: "3D bioprinting with functionalized bioinks is a new powerful technology that can be applied in many other research fields than biomedicine. It is e.g. extremely inspiring to combine such advanced materials science and sensor technology with my research in microbiology and biophotonics, where we currently employ 3D bioprinting to study microbial interactions and photobiology."

###

The work is supported by grants from the Carlsberg Foundation, the Villum Foundation, and the Independent Research Fund Denmark via a Sapere-Aude Advanced Grant, and project grants from the Independent Research Fund Denmark, Natural Sciences (FNU) and the Independent Research Fund Denmark, Technology and Production Sciences (FTP).

Media Contact

Michael Kühl
[email protected]
45-40-47-63-04

http://www.science.ku.dk/english/

Original Source

https://www1.bio.ku.dk/nyheder/pressemeddelelser/3d-bioprinting-of-living-structures-with-built-in-chemical-sensors/ http://dx.doi.org/10.1002/adfm.201804411

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025
Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

October 31, 2025

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Patient Perspectives on Autism Diagnosis

Unlocking Metal Recovery from Manganese Residues

Barriers and Boosts to Person-Centered Nursing Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.