• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

3-D printing and nanotechnology, a mighty alliance to detect toxic liquids

Bioengineer by Bioengineer
January 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Polytechnique Montréal

Carbon nanotubes have made headlines in scientific journals for a long time, as has 3D printing. But when both combine with the right polymer, in this case a thermoplastic, something special occurs: electrical conductivity increases and makes it possible to monitor liquids in real time. This is a huge success for Polytechnique Montréal.

The article "3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors" was published in the journal Small. Renowned in the field of micro- and nanotechnology, Small placed this article on its back cover, a sure sign of the relevance of the research conducted by mechanical engineer Professor Daniel Therriault and his team. In practical terms, the result of this research looks like a cloth; but as soon as a liquid comes into contact with it, said cloth is able to identify its nature. In this case, it is ethanol, but it might have been another liquid. Such a process would be a terrific advantage to heavy industry, which uses countless toxic liquids.

A simple yet efficient recipe

While deceptively simple, the recipe is so efficient that Professor Therriault protected it with a patent. In fact, a U.S. company is already looking at commercializing this material printable in 3D, which is highly conductive and has various potential applications.

The first step: take a thermoplastic and, with a solvent, transform it into a solution so that it becomes a liquid. Second step: as a result of the porousness of this thermoplastic solution, carbon nanotubes can be incorporated into it like never before, somewhat like adding sugar into a cake mix. The result: a kind of black ink that's fairly viscous and whose very high conductivity approximates that of some metals. Third step: this black ink, which is in fact a nanocomposite, can now move on to 3D printing. As soon as it comes out of the printing nozzle, the solvent evaporates and the ink solidifies. It takes the form of filaments slightly bigger than a hair. The manufacturing work can then begin.

The advantages of this technology

The research conducted at Polytechnique Montréal is at the vanguard in the field of uses for 3D printers. The era of amateurish prototyping, like printing little plastic objects, belongs to the past. These days, all manufacturing industries, whether aviation, aerospace, robotics or medicine, etc., have set their sights on this technology.

There are several reasons for this. Firstly, the lightness of parts because plastic is substituted for metal. Then there is the precision of the work done at the microscopic level, as is the case here. Lastly, with the nanocomposite filaments usable at room temperature, conductivities can be obtained that approximate those of some metals. Better still, since the geometry of filaments can be varied, measures can be calibrated that make it possible to read the various electric signatures of liquids that are to be monitored.

A topical example: pipelines

At the connection points of pipes that form pipelines, there are flanges. The idea would be to factory- manufacture the pipes with flanges coated by 3D printing. The coating would be a nanocomposite whose electric signature is calibrated according to the liquid being transported – oil, for instance. If there is a leak and the liquid touches the printed sensors based on the concept developed by Professor Therriault and his team, an alert would sound in record time, and in a very targeted way. That's a tremendous advantage, both for the population and the environment; in case of a leak, the faster the reaction time, the lesser the damages.

###

Professor Therriault's work received support from the Centre de recherche sur les systèmes polymères et composites à haute performance (Research Centre for High-Performance Polymer and Composite Systems – CREPEC), the Canada Research Chairs, the Natural Sciences and Engineering Research Council of Canada (NSERC), Mitacs and the Canada Foundation for Innovation (CFI).

Chizari, K., Daoud, M.A., Ravindran, A.R., & Therriault, D. (2016). Liquid Materials: 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors (Small 44/2016). Small, 12(44), 6176-6176.

doi: 10.1002/smll.201670232

About Polytechnique Montréal

Founded in 1873, Polytechnique Montréal is one of Canada's leading engineering teaching and research institutions. It is the largest engineering university in Québec for the size of its graduate student body and the scope of its research activities. With over 45,700 graduates, Polytechnique Montréal has educated nearly one-quarter of the current members of the Ordre des ingénieurs du Québec. The institution offers more than 120 programs. Polytechnique has 250 professors and over 8,200 students. It has an annual operating budget of more than $210 million, including a research budget exceeding $70 million.

Media Contact

Annie Touchette
[email protected]
514-231-8133
@polymtl

http://www.polymtl.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

October 7, 2025

Reelin: A Promising Protein for Gut Repair and Depression Treatment

October 7, 2025

FIU Cybersecurity Experts Unveil Midflight Defense Mechanism to Prevent Drone Hijacking

October 7, 2025

UBCO Study Reveals Sex Education Falls Short for 2SLGBTQIA+ Students

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    888 shares
    Share 355 Tweet 222
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

Reelin: A Promising Protein for Gut Repair and Depression Treatment

FIU Cybersecurity Experts Unveil Midflight Defense Mechanism to Prevent Drone Hijacking

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.