• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

3-D bioprinted human cartilage cells can be implanted

Bioengineer by Bioengineer
March 23, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Philip Krantz

Swedish researchers at Chalmers University of Technology and Sahlgrenska Academy have successfully induced human cartilage cells to live and grow in an animal model, using 3D bioprinting. The results will move development closer to a potential future in which it will be possible to help patients by giving them new body parts through 3D bioprinting.

The results were recently presented in the journal Plastic and Reconstructive Surgery Global Open.

"This is the first time anyone has printed human-derived cartilage cells, implanted them in an animal model and induced them to grow," says Paul Gatenholm, professor of biopolymer technology at Chalmers University of Technology.

Among else, Professor Gatenholm leads the research team working with the new biomaterial based on nanocellulose at the Wallenberg Wood Science Center. He has been working with Lars Kölby, senior lecturer at Sahlgrenska Academy at University of Gothenburg and specialist consultant with the Department of Plastic Surgery at Sahlgrenska University Hospital.

The researchers printed a hydrogel of nanocellulose mixed with human-derived cartilage cells – a so called construct. They used a 3D bioprinter manufactured by Cellink, a Gothenburg-based startup firm whose bio-ink is a result of research by Paul Gatenholm. Immediately after printing, the construct was implanted in mice.

The researchers can report three positive results of the animal study:

    1. Human cartilage tissue has grown in an animal model.
    2. Vascularisation, i.e., the formation of blood vessels, between the materials.
    3. Strong stimulation of proliferation and neocartilage formation by human stem cells.

"What we see after 60 days is something that begins to resemble cartilage. It is white and the human cartilage cells are alive and producing what they are supposed to. We have also been able to stimulate the cartilage cells by adding stem cells, which clearly promoted further cell division," says Lars Kölby.

"We now have proof that the 3D printed hydrogel with cells can be implanted. It grows in mice and, in addition, blood vessels have formed in it," says Paul Gatenholm.

Collaboration has been a key component and critical to the success of the project. Scientists in two different disciplines have successfully crossed academic lines to find a common goal where they could combine their skills in a fruitful way.

"Often, it is like this: we clinicians work with problems and researchers work with solutions. If we can come together, there is a chance of actually solving some of the problems we are wrestling with – and in this way, patients benefit from the research," says Lars Kölby.

Paul Gatenholm is careful to point out that the results he and Lars Kölby's team are now able to report do not involve any short cut to bioprinted organs.

"With what we have done, the research has taken a step forward towards someday, we hope, being able to bioprint cells that become body parts for patients. This is how you have to work when it comes to this kind of pioneering activity: one small step at a time. Our results are not a revolution – but they are a gratifying part of an evolution!"

###

Media Contact

Johanna Wilde
[email protected]
46-317-722-029
@chalmersnyheter

http://www.chalmers.se/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.