• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

$3.6 million NIH award funds research to treat painful diabetic neuropathy

Bioengineer by Bioengineer
October 23, 2023
in Health
Reading Time: 3 mins read
0
Kristy Townsend, PhD, associate professor in the Department of Neurosurgery at The Ohio State University College of Medicine.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBUS, Ohio – A $3.6 million award from the National Institutes of Health will allow neurosurgical, neurology and neuroscience researchers at The Ohio State University Wexner Medical Center and College of Medicine to test a novel diagnosis and treatment combination for painful diabetic neuropathy. The approach combines spinal cord stimulation with measurement of small fiber nerve activity using a patent-pending device called Detecting Early Neuropathy (DEN).

Kristy Townsend, PhD, associate professor in the Department of Neurosurgery at The Ohio State University College of Medicine.

Credit: The Ohio State University Wexner Medical Center

COLUMBUS, Ohio – A $3.6 million award from the National Institutes of Health will allow neurosurgical, neurology and neuroscience researchers at The Ohio State University Wexner Medical Center and College of Medicine to test a novel diagnosis and treatment combination for painful diabetic neuropathy. The approach combines spinal cord stimulation with measurement of small fiber nerve activity using a patent-pending device called Detecting Early Neuropathy (DEN).

Diabetes is a growing health concern worldwide, and rates are particularly high in the United States, with more than 37 million Americans – or about 1 in 10 – living with the disease, according to the Centers for Disease Control and Prevention. Diabetes is associated with numerous health problems, including peripheral neuropathy, which can lead to severe pain.

Peripheral neuropathy is the death of the nerve endings that innervate our tissues and organs, which can worsen the control of diabetes by blunting neural communication between the brain and peripheral tissues and organs. It’s estimated that more than 30 million Americans suffer from peripheral neuropathy.

“Options to diagnose and treat peripheral neuropathy are very limited and ineffective, and thus more research is needed to develop and test new options that can reduce the pain, discomfort, high medical costs and loss of productivity for patients,” said co-principal investigator Kristy Townsend, PhD, associate professor in the Department of Neurosurgery at Ohio State. “Patients have very few options for treatment of their debilitating peripheral neuropathy, and there’s an over-reliance on addictive opioid pain medications which are only partially effective.”

With peripheral neuropathy, typically multiple nerve types – sensory, sympathetic or motor – degenerate, so the symptoms are complex and can include numbness, tingling, burning, pain, and motor loss. In severe cases, patients may undergo limb amputation.

It is estimated that up to 70% of patients with diabetes will develop neuropathy, some even in the pre-diabetes state. Other small fiber neuropathies are caused by chemotherapy, aging, and now – long COVID, said Townsend, whose research program investigates nervous system plasticity, remodeling, and regeneration in situations of metabolic disease, such as obesity, diabetes, aging, cardiometabolic disease, and peripheral neuropathy. 

“Spinal cord stimulation (SCS) is a cutting-edge therapy that provides device-mediated electrical stimulation to the spinal cord and has strong prior data demonstrating its efficacy in relieving chronic pain, including in patients with painful diabetic neuropathy,” said co-principal investigator Brian Dalm, MD, a neurosurgeon and clinical assistant professor of neurological surgery at Ohio State Wexner Medical Center. Dalm specializes in neuromodulation, including deep brain stimulation, spinal cord stimulation and peripheral nerve stimulation.

The DEN is undergoing research and development by Townsend and colleagues through an academic spin-out company, Neuright Inc. The DEN was developed to more sensitively, functionally, and qualitatively measure and diagnose small fiber neuropathy so that the condition can be detected more easily, and earlier in the disease progression when therapies are likely to be more effective.

Together, this research collaboration allows synergistic clinical and translational data collection to investigate clinical outcomes and cellular mechanisms underlying the therapeutic effects of SCS for patients with painful diabetic neuropathy. 

“While SCS holds great promise for patients with painful diabetic neuropathy, the mechanisms by which it works are unknown. We hypothesized that the effects include increased vascularization and release of nerve growth factors that could spur small fiber axon regeneration, and this newly funded R01 will be the first study to measure those outcomes in patients receiving SCS versus conventional medical management,” Dalm said. 

DEN measurements combined with tissue analyses will, for the first time, determine if SCS increases beneficial nerve regeneration as a contributor to pain relief.

Currently, there are no effective treatments to regenerate or regrow nerve endings lost to this condition, despite the knowledge that peripheral nerves uniquely and readily regenerate after other damage, such as injury by nerve crush. 

“This could be a revolutionary finding, providing evidence that a non-pharmacological approach is effective at promoting neuropathy reversal,” Townsend said.

Disclosures: Townsend is a co-founder and Chief Scientific Officer of Neuright. Dalm is a paid consultant for Medtronic, Surgical Information Sciences, Varian and Alcyone. 

 

 

# # #



Share12Tweet8Share2ShareShareShare2

Related Posts

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

October 10, 2025

Linking COPD, Cardiovascular Admissions to Referral Compliance

October 10, 2025

Impact of Nurses’ Well-being on Organ Donation Attitudes

October 10, 2025

Geniposide Reduces Kidney Fibrosis via STAT3-Glycolysis Pathway

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1185 shares
    Share 473 Tweet 296
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

Linking COPD, Cardiovascular Admissions to Referral Compliance

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.