• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

2D materials for conducting hole currents from grain boundaries in perovskite solar cells

Bioengineer by Bioengineer
April 1, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Peng You, Guanqi Tang, Jiupeng Cao, Dong Shen, Tsz-Wai Ng, Zafer Hawash, Naixiang Wang, Chun-Ki Liu, Wei Lu, Qidong Tai, Yabing Qi, Chun-Sing Lee, Feng Yan

Grain boundaries (GBs) in PSCs have been found to be detrimental to the photovoltaic performance of the devices. Numerous papers reported that the defects in perovskite GBs should be passivated by suitable materials, such as quaternary ammonium halide, fullerene derivatives and CH3NH3I, to alleviate carrier recombination and consequently improve the device performance.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Feng Yan from Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, and co-workers have developed a novel method to overcome the drawback of perovskite GBs without defect passivation on them. Several 2-D materials, including black phosphorus (BP), MoS2 and graphene oxide (GO), are specifically modified on the edge of perovskite GBs by a solution process. The 2-D materials have high carrier mobilities, ultrathin thicknesses and smooth surfaces without dangling bonds. The PCEs of the devices are substantially enhanced by the 2-D flakes, in which BP flakes can induce the highest relative enhancement of about 15%. More interestingly, they find that, under certain conditions, GBs modified with the 2-D materials are favorable for the device performance. Therefore, a synergistic effect between the 2-D flakes and perovskite GBs is observed for the first time. Although the nanotechnology of using 2-D materials in PSCs has been reported in some papers, the synergistic effect between the 2-D flakes and perovskite GBs has not been reported until now. To better understand the underlying mechanism of the above effect, device simulation was conducted by using a commercial software. The hole conduction processes from GBs to 2-D flakes in PSCs are clearly demonstrated, showing that the GBs and 2-D flakes all act as hole channels in the devices. The simulation results confirm that the performance enhancement induced by BP is higher than that by other 2-D materials because of the highest hole mobility of BP. In addition, the modification of the 2-D flakes on the perovskite grains away from GBs has little effect on the device performance, indicating that the synergistic effect of 2-D flakes and perovskite GBs is essential to the performance enhancement in our devices.

Although the coverage of the 2-D flakes on the perovskite films is only several percent, most of the flakes are located on perovskite GBs. Due to the high carrier mobilities of the 2-D materials especially BP, hole transfer from GBs is dramatically enhanced in the PSCs, resulting in substantial improvements of the efficiency as well as the stability of the devices. These results also indicate that GBs in PSCs are not detrimental to the device performance if the accumulated holes in the GBs can be conducted out efficiently. Under certain conditions, GBs even can be favorable for the photovoltaic performance of PSCs due to the built-in electric fields around them, which can facilitate photocarrier separation and transfer in the devices. Therefore, perovskite GBs are electrically benign, which is consistent with some theoretical calculations reported before. More importantly, they observed the synergic effect of the 2D flakes on the GBs in PSCs for the first time. Both the carrier mobility and the location of the 2D flakes on the perovskite surface are essential to the performance enhancement. This work provides a guideline of modifying perovskite layers with novel high-mobility 2-D materials to improve the photovoltaic performance as well as the stability of PSCs.

###

Media Contact
Feng Yan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00515-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caring Self-Efficacy: Key to Pediatric Nurses’ Compassionate Care

Impact of Parentification on Female Adolescents’ Families

New Trial Combines Immunotherapy with Chemotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.