• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

2D material controls light twice stronger

Bioengineer by Bioengineer
December 17, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Since the invention of world’s first laser – the ruby laser – in 1960, the human desire to control light has spread to various industries, including telecommunications, medicine, GPS, optical sensors and optical computers. Recently, a POSTECH research team has taken a step closer to its goal of controlling light by identifying nonlinear optical phenomena occurring in heterobilayers composed of two-dimensional materials.

A nonlinear optical phenomenon refers to the occurrence of light whose intensity is not doubled when optical input intensity becomes doubled, in which the resulting output has different frequencies from original input. This phenomenon is easily understood if you think of electrons and nuclei as spring-connected oscillators. When the spring is moved at a constant cycle, light is generated by the oscillation of electrons and nuclei. If the spring-pulling force is small, only light with the same frequency as the applied external force is formed, but when a strong force is exerted, light with multiple frequency is produced. Among these, light with twice the input frequency is called second-harmonic generation (SHG). The secondary harmonic wave phenomenon can occur in substances that are not point-symmetric, and it has recently been discovered that efficiency is high in 2D semiconductor crystals such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2).

A research team led by Professor Sunmin Ryu and Wontaek Kim in the MS/Ph.D integrated program in the Department of Chemistry at POSTECH noted that the secondary harmonic wave produced by a heterobilayer material (MoS2/WS2) could not be explained by the existing model, and confirmed that it was caused by the SHG interference with different phases. The team anticipated the phase difference in SHG through the results of polarizing spectroscopy of heterolayers that showed the elliptically polarized SHG light. The phase difference directly measured through the secondary harmonic wave interferometer2 was quantitatively consistent with the results obtained from polarizing spectroscopy, proving their hypothesis. In addition, DFT calculations were able to support these results.

So far SHG studies of 2D materials have mostly been limited to its intensity but this is the first time that the SHG phase was measured and it was shown that there is a difference in SHG phase between the two materials. The research showed the possibility of controlling SHG’s phase.

“The conventional research was biased toward identifying the orientation of 2D crystal samples using SHG intensity and controlling it through external stimuli,” remarked Professor Sunmin Ryu who led the study. He added, “This study not only broadened our understanding of nonlinear optical phenomena of 2D materials, but also opened new possibilities for nonlinear spectroscopic control methods.” He concluded, “The research results are expected to greatly contribute to the control of nonlinear optical phenomena by using 2D materials to produce new photons with twice the frequency of vibration and controlled phase.”

###

Published in the latest issue of the prestigious international journal Nano Letters, this research was conducted with the support from the Mid-Career Researcher Program and the Basic Research Lab Program (2D Van der Waals Material Science and Chemical Engineering Lab) of the National Research Foundation of Korea.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/2d-material-controls-light-twice-stronger/#post-21832

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c03763

Tags: BiochemistryChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsOpticsParticle PhysicsPharmaceutical/Combinatorial ChemistryPolymer ChemistryResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

American Pediatric Society Honors Bruce D. Gelb, MD with 2026 APS John Howland Award

October 29, 2025

m6A Regulators Shape Prostate Cancer Prognosis

October 29, 2025

Unveiling Amyloid Fibrils in Atrial Fibrillation

October 29, 2025

Fibroblasts: Unveiling Their Role as Key Drivers in Heart Failure Progression

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting Carbon Footprint in Long-Haul E-Trucks

Transforming CO: How Industrial Microbes Turn Carbon Monoxide into Sustainable Biofuel

American Pediatric Society Honors Bruce D. Gelb, MD with 2026 APS John Howland Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.