• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

180-million-year-old rocks lend insight into Earth’s most powerful earthquakes

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The raggedness of the ocean floors could be the key to triggering some of the Earth's most powerful earthquakes, scientists from Cardiff University have discovered.

In a new study published today in Nature Geoscience the team, also from Utrecht University, suggest that large bumps and mounds on the sea floor could be the trigger point that causes the crust in the Earth's oceans to drastically slip beneath the crust on the continent and generate a giant earthquake.

By studying exposed rocks from a 180-million-year-old extinct fault zone in New Zealand, the researchers have shown, for the first time, that the extremely thick oceanic and continental tectonic plates can slide against each other without causing much bother, but when irregularities on the sea floor are introduced, it can cause a sudden slip of the tectonic plate and trigger a giant earthquake.

The researchers believe that this information, along with detailed subsurface maps of the ocean floor, could help to develop accurate models to forecast where large earthquakes are likely to occur along subduction zones, and therefore help to prepare for disasters.

For generations scientists have known that the largest earthquakes, known as megathrust earthquakes, are triggered at subduction zones where a single tectonic plate is pulled underneath another one. It is also in these regions that volcanoes form, as is most common in the so-called 'Ring of Fire' in the Pacific Ocean – the most seismically active region in the world.

The most recent megathrust earthquake occurred in Tohoku, Japan in 2011. The magnitude 9 earthquake triggered a 40 metre-high tsunami and claimed over 15,000 lives with economic costs estimated at US$235 billion.

However, there are many regions across the world, including in the 'Ring of Fire', where scientists would expect megathrust earthquakes to occur, but they don't.

The new research appears to have solved this conundrum and therefore propose an explanation as to what triggers giant earthquakes. The team arrived at their conclusions by examining rocks that, through erosion and tectonic uplift, have been carried to the Earth's surface from depths of 15-20km in an extinct fault zone in New Zealand that was once active around 180 million years ago.

The team found that the rocks in the fault zone can be tens to hundreds of metres thick and can act as a sponge to soak up the pressure that builds as two tectonic plates slip past each other.

This means that movement between two plates can commonly occur with no consequences, and that it takes a sudden change in the conditions, such as a lump or mound on the sea floor, to trigger an earthquake.

"By exhuming rocks from this depth, we've been able to gain an unprecedented insight into what a fault zone actually looks like," said Dr Ake Fagereng, lead author of the study from Cardiff University's School of Earth and Ocean sciences.

"With an active fault in the ocean, we can only drill to a depth of 6km, so our approach has given us some really valuable information."

"We've shown that the fault zone along plate boundaries may be thicker than we originally thought, which can accommodate the stress caused by the creeping plates. However, when you have an irregularity on the sea floor, such as large bumps or mounds, this can cause the plate boundaries to slip tens of metres and trigger a giant earthquake."

###

1. For further information contact:
Michael Bishop
Communications & Marketing
Cardiff University
Tel: 02920 874499 / 07713 325300
Email: [email protected]

2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, University Chancellor Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk

Media Contact

Michael Bishop
[email protected]
029-208-74499
@cardiffuni

http://www.cardiff.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Bladder Cancer: Exploring Biological and Clinical Gender Differences

Bladder Cancer: Exploring Biological and Clinical Gender Differences

October 17, 2025

GAS5 RNA Links to Colorectal Cancer Prognosis

October 17, 2025

Genetics Reveal Links Between Steatotic Liver, Insulin Resistance

October 17, 2025

High-Performance Sodium-Ion Batteries from Starch-Based Hard Carbon

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bladder Cancer: Exploring Biological and Clinical Gender Differences

GAS5 RNA Links to Colorectal Cancer Prognosis

Genetics Reveal Links Between Steatotic Liver, Insulin Resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.