• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Stem Cells

An Attractive Solution for Heart Repair

Bioengineer by Bioengineer
August 16, 2014
in Stem Cells
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Stem cell therapy is a promising option for repairing heart tissue damaged by heart attack. However, the main obstacle to cardiac stem cell therapy also happens to be pretty difficult to get around – and that’s the fact that the heart is constantly in motion.

An Attractive Solution for Heart

“Cell retention is always problematic when you do cell transplantation, but in the heart it is particularly difficult,” says Ke Cheng, associate professor of regenerative medicine at NC State. “The heart’s pumping can wash cells out of the organ and they’ll either disappear or end up in other organs – where they are essentially wasted.”

Cheng specializes in regenerative medicine, and he wanted to address the problem of keeping cardiac stem cells where they belong long enough for them to settle in and start working. In 2010, he showed that it was possible to attach an iron nanoparticle to cardiac stem cells and use a magnetic field to keep the cells where they needed to be.

Now, Cheng has taken his process one step further. In a recently published paper in Biomaterials, Cheng used nanoparticles from an FDA-approved anemia drug called Feraheme to label the cardiac stem cells, then used magnets to direct the cells to the hearts of rats with cardiac disease.

“The magnetic field dramatically improved cell retention and the therapeutic effects,” Cheng says. “We’re talking about a three-fold increase in cell retention. And the fact that the label we used is an already FDA-approved drug means that we are one step closer to bringing the therapy to clinical trials in humans.”

Story Source:

The above story is based on materials provided by NC State University.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    53 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    41 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Nanoplastics: Dielectrophoresis Meets Raman Spectroscopy

Introducing The Lancet Countdown on Health and Plastics: A Groundbreaking Report

Dual-Targeting Clears HER2 IHC Diagnostic Hurdles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.