• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UVA research team detects additive manufacturing defects in real-time

Bioengineer by Bioengineer
January 6, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Tao Sun, associate professor of materials science and engineering at the University of Virginia, has made new discoveries that can expand additive manufacturing in aerospace and other industries that rely on strong metal parts.

UVA Associate Professor Tao Sun

Credit: Photo by Tom Cogill for UVA Engineering

A research team led by Tao Sun, associate professor of materials science and engineering at the University of Virginia, has made new discoveries that can expand additive manufacturing in aerospace and other industries that rely on strong metal parts.

Their peer-reviewed paper was published Jan. 6, 2023, in Science Magazine: “Machine learning aided real-time detection of keyhole pore generation in laser powder bed fusion.” It addresses the issue of detecting the formation of keyhole pores, one of the major defects in a common additive manufacturing technique called laser powder bed fusion, or LPBF.

Introduced in the 1990s, LPBF uses metal powder and lasers to 3-D print metal parts. But porosity defects remain a challenge for fatigue-sensitive applications like aircraft wings. Some porosity is associated with deep and narrow vapor depressions which are the keyholes.

The formation and size of the keyhole is a function of laser power and scanning velocity, as well as the materials’ capacity to absorb laser energy. If the keyhole walls are stable, it enhances the surrounding material’s laser absorption and improves laser manufacturing efficiency. If, however, the walls are wobbly or collapse, the material solidifies around the keyhole, trapping the air pocket inside the newly formed layer of material. This makes the material more brittle and more likely to crack under environmental stress.

Sun and his team, including materials science and engineering professor Anthony Rollett from Carnegie Mellon University and mechanical engineering professor Lianyi Chen from the University of Wisconsin-Madison, developed an approach to detect the exact moment when a keyhole pore forms during the printing process.

“By integrating operando synchrotron x-ray imaging, near-infrared imaging, and machine learning, our approach can capture the unique thermal signature associated with keyhole pore generation with sub-millisecond temporal resolution and 100% prediction rate,” Sun said.

In developing their real-time keyhole detection method, the researchers also advanced the way a state-of-the-art tool — operando synchrotron x-ray imaging — can be used. Utilizing machine learning, they additionally discovered two modes of keyhole oscillation.

“Our findings not only advance additive manufacturing research, but they can also practically serve to expand the commercial use of LPBF for metal parts manufacturing,” said Rollett. Rollet is also the co-director of the NextManufacturing Center at CMU. 

“Porosity in metal parts remains a major hurdle for wider adoption of LPBF technique in some industries. Keyhole porosity is the most challenging defect type when it comes to real-time detection using lab-scale sensors because it occurs stochastically beneath the surface,” Sun said. “Our approach provides a viable solution for high-fidelity, high-resolution detection of keyhole pore generation that can be readily applied in many additive manufacturing scenarios.”

 

About UVA Engineering: As part of the top-ranked, comprehensive University of Virginia, UVA Engineering is one of the nation’s oldest and most respected engineering schools. Our mission is to make the world a better place by creating and disseminating knowledge and by preparing future engineering leaders. Outstanding students and faculty from around the world choose UVA Engineering because of our growing and internationally recognized education and research programs. UVA is the No. 1 public engineering school in the country for the percentage of women graduates, among schools with at least 75 degree earners; among the top engineering schools in the United States for the four-year graduation rate of undergraduate students; and among the top-growing public engineering schools in the country for the rate of Ph.D. enrollment growth. Our research program has grown by 95% since 2016. Learn more at engineering.virginia.edu.

# # #



Journal

Science

DOI

10.1126/science.add4667

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion

Article Publication Date

6-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Sandra Purdy

People with arthritis 20% less likely to be in work

January 30, 2023
FAIRY flying robot

A fairy-like robot flies by the power of wind and light

January 30, 2023

UK’s Overseas Territories at ongoing risk from wide range of invasive species

January 30, 2023

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

People with arthritis 20% less likely to be in work

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In