• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tracking trust in human-robot work interactions

Bioengineer by Bioengineer
November 1, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The future of work is here.

human-robot work interactions

Credit: Texas A&M Engineering

The future of work is here.

As industries begin to see humans working closely with robots, there’s a need to ensure that the relationship is effective, smooth and beneficial to humans. Robot trustworthiness and humans’ willingness to trust robot behavior are vital to this working relationship. However, capturing human trust levels can be difficult due to subjectivity, a challenge researchers in the Wm Michael Barnes ’64 Department of Industrial and Systems Engineering at Texas A&M University aim to solve.

Dr. Ranjana Mehta, associate professor and director of the NeuroErgonomics Lab, said her lab’s human-autonomy trust research stemmed from a series of projects on human-robot Interactions in safety-critical work domains funded by the National Science Foundation (NSF).

“While our focus so far was to understand how operator states of fatigue and stress impact how humans interact with robots, trust became an important construct to study,” Mehta said. “We found that as humans get tired, they let their guards down and become more trusting of automation than they should. However, why that is the case becomes an important question to address.”

Mehta’s latest NSF-funded work, recently published in Human Factors: The Journal of the Human Factors and Ergonomics Society, focuses on understanding the brain-behavior relationships of why and how an operator’s trusting behaviors are influenced by both human and robot factors.

Mehta also has another publication in the journal Applied Ergonomics that investigates these human and robot factors.

Using functional near-infrared spectroscopy, Mehta’s lab captured functional brain activity as operators collaborated with robots on a manufacturing task. They found faulty robot actions decreased the operator’s trust in the robots. That distrust was associated with increased activation of regions in the frontal, motor and visual cortices, indicating increasing workload and heightened situational awareness. Interestingly, the same distrusting behavior was associated with the decoupling of these brain regions working together, which otherwise were well connected when the robot behaved reliably. Mehta said this decoupling was greater at higher robot autonomy levels, indicating that neural signatures of trust are influenced by the dynamics of human-autonomy teaming.

“What we found most interesting was that the neural signatures differed when we compared brain activation data across reliability conditions (manipulated using normal and faulty robot behavior) versus operator’s trust levels (collected via surveys) in the robot,” Mehta said. “This emphasized the importance of understanding and measuring brain-behavior relationships of trust in human-robot collaborations since perceptions of trust alone is not indicative of how operators’ trusting behaviors shape up.”

Dr. Sarah Hopko ’19, lead author on both papers and recent industrial engineering doctoral student, said neural responses and perceptions of trust are both symptoms of trusting and distrusting behaviors and relay distinct information on how trust builds, breaches and repairs with different robot behaviors. She emphasized the strengths of multimodal trust metrics — neural activity, eye tracking, behavioral analysis, etc. — can reveal new perspectives that subjective responses alone cannot offer.

The next step is to expand the research into a different work context, such as emergency response, and understand how trust in multi-human robot teams impact teamwork and taskwork in safety-critical environments. Mehta said the long-term goal is not to replace humans with autonomous robots but to support them by developing trust-aware autonomy agents.

“This work is critical, and we are motivated to ensure that humans-in-the-loop robotics design, evaluation and integration into the workplace are supportive and empowering of human capabilities,” Mehta said.



Journal

Applied Ergonomics

DOI

10.1016/j.apergo.2022.103863

Article Title

Physiological and perceptual consequences of trust in collaborative robots: An empirical investigation of human and robot factors

Article Publication Date

30-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In