• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, July 5, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tracking chirality in real time

Bioengineer by Bioengineer
May 26, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other and non-superposable – much like a pair of hands. While they share most chemical and physical properties, enantiomers can have adverse effects in (bio)chemical phenomena. For example, a protein or enzyme may only bind one enantiomeric form of a target molecule. Consequently, identification and control of chirality is often key to designing (bio)chemical compounds, e.g. in the food, fragrance, and pharmaceutical industries. 

Time-resolved circular dichroism measurement of a photoexcited spin-crossover complex

Credit: Ella Maru Studio, Inc.

Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other and non-superposable – much like a pair of hands. While they share most chemical and physical properties, enantiomers can have adverse effects in (bio)chemical phenomena. For example, a protein or enzyme may only bind one enantiomeric form of a target molecule. Consequently, identification and control of chirality is often key to designing (bio)chemical compounds, e.g. in the food, fragrance, and pharmaceutical industries. 

A most common technique for detecting chirality is called circular dichroism, which measures how chiral samples absorb left- and right-circularly polarized light differently to directly identify pairs of enantiomers. Circular dichroism can also help resolve the conformation of a molecule through its chiral response – a feature that has made it a popular analytical tool in (bio)chemical sciences.

However, circular dichroism has so far been limited in time-resolution and spectral range. Researchers led by Malte Oppermann in the group of Majed Chergui at EPFL, have now developed a new time-resolved instrument that measures circular dichroism changes in fractions of a picosecond (one trillionth of a second), meaning that it can “take” ultrafast snapshots of a molecule’s chirality throughout its (bio)chemical activity. This makes it possible to capture the chirality of photoexcited molecules and to resolve the conformational motion that drives the conversion of the absorbed light energy.

In a collaboration with the group of Jérôme Lacour at the University of Geneva and Francesco Zinna at the University of Pisa, the researchers used the new method to investigate the magnetic-switching dynamics of so-called “iron-based spin-crossover complexes” – an important class of metallo-organic molecules with promising applications in magnetic data storage and processing devices. After decades of research, the deactivation mechanism of their magnetic state has remained unresolved, despite its importance for magnetic data storage.

Carrying out a time-resolved circular dichroism experiment, the researchers discovered that the loss of magnetization is driven by a twisting of the molecule’s structure that distorts its chiral symmetry. Remarkably, the team was also able to slow down the decay of the magnetic state by suppressing the twisting motion in modified complexes.

“These ground-breaking experiments show that time-resolved circular dichroism is uniquely suited to capture the molecular motion that drives many (bio)chemical processes,” says Malte Oppermann. “This offers a new way for investigating challenging dynamic phenomena – for example the ultrafast rotations of synthetic molecular motors, and the conformational changes of proteins and enzymes in their native liquid environment.”



Journal

Nature Chemistry

DOI

10.1038/s41557-022-00933-0

Article Title

Chiral control of spin-crossover dynamics in Fe(II) complexes

Article Publication Date

26-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Professor Imamizu and a volunteer carry out the experiment.

Link between recognizing our voice and feeling in control

July 5, 2022
Two whales in the deep

Eavesdropping on whales in the high Arctic

July 5, 2022

USC researcher leads effort to improve research on diet and dementia

July 4, 2022

Scientists discover key to hepatitis A virus replication, show drug effectiveness

July 4, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • Telescopic contact lenses

    39 shares
    Share 16 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUrbanizationWeaponryVaccinesUniversity of WashingtonVaccineVirologyUrogenital SystemVehiclesZoology/Veterinary ScienceWeather/StormsVirus

Recent Posts

  • Link between recognizing our voice and feeling in control
  • Eavesdropping on whales in the high Arctic
  • USC researcher leads effort to improve research on diet and dementia
  • Scientists discover key to hepatitis A virus replication, show drug effectiveness
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....