• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 23, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Team IDs mechanism underlying rare children’s blood cancer

Bioengineer by Bioengineer
January 20, 2022
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO (Jan. 19, 2022) — Researchers at The University of Texas Health Science Center at San Antonio (UT Health San Antonio), reporting this week in the journal Proceedings of the National Academy of Sciences, identified a mechanism through which two antiviral genes, when mutated, promote a childhood cancer called pediatric myelodysplastic syndrome (MDS). Scientists at Oklahoma State University and Cornell University collaborated on the study.

Team IDs mechanism underlying rare children’s blood cancer

Credit: Yan Xiang, PhD, The University of Texas Health Science Center at San Antonio

SAN ANTONIO (Jan. 19, 2022) — Researchers at The University of Texas Health Science Center at San Antonio (UT Health San Antonio), reporting this week in the journal Proceedings of the National Academy of Sciences, identified a mechanism through which two antiviral genes, when mutated, promote a childhood cancer called pediatric myelodysplastic syndrome (MDS). Scientists at Oklahoma State University and Cornell University collaborated on the study.

When normal, the genes, called SAMD9 and SAMD9L, suppress tumor formation and help protect against virus infection. They are effective and selective sentinels.

“Normally those two genes are silent in the cells, only becoming activated when they encounter infection,” said senior author Yan Xiang, PhD, professor of microbiology, immunology and molecular genetics in the Joe R. and Teresa Lozano Long School of Medicine. “However, if an individual has a mutation in these two genes, they are turned on, even without infection. And that can create a lot of diseases.”

Since 2017, studies have found that about 8% of pediatric MDS patients have mutations in the two genes. That makes SAMD9/SAMD9L errors the most common currently known cause of MDS in children. These children have fewer immune cells than normal and a high tendency to develop acute myeloid leukemia.

The new study contributes two key findings:

  • Patient-derived SAMD9/SAMD9L mutations cause a stall in protein synthesis in cells and prompt a stress response to abnormal protein synthesis. This could largely explain why children with the mutations have the underdeveloped immune system. Other studies in the last few months have hinted at protein synthesis as the problem.
  • SAMD9 and SAMD9L proteins have a specific region that is very critical for their function. When the researchers deactivated this region, they stopped the toxic effects of the mutated proteins, Dr. Xiang said.

The team also found that this protein region performs the toxic function through binding to nucleic acids, which are molecules that store and express genetic information.

“We obtained a crystal structure of the region to know what it looks like,” Dr. Xiang said, referring to X-ray crystallography studies showing the 3D architecture of the region.

“Since we have the structure of that region, and we know its function, we fully believe we have identified a key therapeutic target for pediatric myelodysplastic syndromes derived from SAMD9 and SAMD9L mutations,” Dr. Xiang said. “We hope to eventually develop a molecule to target that region.”

To date, bone marrow transplant is the only treatment option for children who have SAMD9 and SAMD9L mutations. Families will welcome additional therapies.

MDS is characterized by abnormal stem cell function in the bone marrow, resulting in lower numbers of blood cells than normal. The blood cells are poorly formed and don’t work well. Although rare, MDS risk increases with age.

Pediatric MDS is rare in children. It is diagnosed in approximately 1 in a million babies born each year and represents less than 5% of pediatric hematological malignancies.

Acknowledgments

This work was supported by NIH grant AI151638 (Yan Xiang). Junpeng Deng is also supported by the Oklahoma Agricultural Experiment Station at Oklahoma State University under project OKL03060. Flow cytometry data were generated in the UT Health San Antonio Flow Cytometry Shared Resource Facility (supported by NIH-NCI P30 CA054174 and UL1 TR002645) with help from Sebastian Montagnino. Sequencing data were generated in the UT Health San Antonio Genome Sequencing Facility (supported by NIH-NCI P30 CA054174 and 1S10OD021805-01).


Structure and Function of an Effector Domain in Antiviral Factors and Tumor Suppressors SAMD9 and SAMD9L

Shuxia Peng, Xiangzhi Meng, Fushun Zhang, Prabhat Kumar Pathak, Juhi Chaturvedi, Jaime Coronado, Marisol Morales, Yuanhui Mao, Shu-Bing Qian, Junpeng Deng, Yan Xiang

First published: Jan. 17, 2022, Proceedings of the National Academy of Sciences of the United States of America

https://www.pnas.org/content/119/4/e2116550119


The University of Texas Health Science Center at San Antonio, also referred to as UT Health San Antonio, is one of the country’s leading health sciences universities and is designated as a Hispanic-Serving Institution by the U.S. Department of Education. With missions of teaching, research, patient care and community engagement, its schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have graduated 39,700 alumni who are leading change, advancing their fields, and renewing hope for patients and their families throughout South Texas and the world. To learn about the many ways “We make lives better®,” visit www.uthscsa.edu.

Stay connected with The University of Texas Health Science Center at San Antonio on Facebook, Twitter, LinkedIn, Instagram and YouTube.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2116550119

Method of Research

Experimental study

Subject of Research

People

Article Title

Structure and Function of an Effector Domain in Antiviral Factors and Tumor Suppressors SAMD9 and SAMD9L

Article Publication Date

19-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

James Bibb

Novel preclinical drug could have potential to combat depression, brain injury and cognitive disorders

May 20, 2022
Oncotarget | Anti-Cancer Drug Profiling With CancerOmicsNet

Oncotarget | Anti-cancer drug profiling with CancerOmicsNet

May 19, 2022

New CMJ Review explores the metabolic dysfunction associated fatty liver disease

May 19, 2022

Aging-US: Hallmarks of cancer and hallmarks of aging reviewed

May 18, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVaccinesUrogenital SystemVirologyVehiclesUrbanizationVirusUniversity of WashingtonVaccineWeaponryWeather/StormsViolence/Criminals

Recent Posts

  • Staying flexible
  • Price noise proves the key to high performing ‘bets against beta’ investment strategies
  • California shellfish farmers adapt to climate change
  • National Comprehensive Cancer Network honors oncology leaders promoting progress in cancer care
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....