• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SwRI develops cyber security intrusion detection system for industrial control systems

Bioengineer by Bioengineer
May 2, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — May 2, 2022 — Southwest Research Institute has developed technology to help government and industry detect cyber threats to industrial networks used in critical infrastructure and manufacturing systems. SwRI funded the research to address emerging cyber threats in the rapidly evolving ecosystem for industrial automation.

The team used algorithms to scan for cyber threats across network protocols that transmit industrial control data for everything from natural gas pipelines to manufacturing robots. The research led to development of an intrusion detection system (IDS) for industrial control systems (ICS).

“Historically, industrial control systems were not designed with security in mind,” said Ian R. Meinzen, an SwRI intelligent machines engineer who worked on the project. “They had the benefit of an ‘air gap’ where they could operate securely without a connection to IT networks.”

Unplugging industrial networks from information technology (IT) networks, however, is no longer an option for modern automation systems that rely on the internet of things (IoT) to transmit vast amounts of data. IoT describes the network of physical objects embedded with sensors and software to connect and exchange data with other devices and systems via communications networks over the internet.

“Connecting IoT devices and other hardware exposes industrial networks to security vulnerabilities,” said Peter Moldenhauer, an SwRI computer scientist specializing in cybersecurity. “Attacks can occur through an IoT device or even network protocols and outdated software.”

The SwRI team focused this research on scanning for cyberattacks over the Modbus/TCP protocol. Utilities and industry have used this Ethernet-based networking protocol for decades in supervisory controls and data acquisition (SCADA) systems equipment.

SwRI researchers originally developed the algorithms to scan Controller Area Network (CAN) bus networks used in automotive hardware. They customized cybersecurity algorithms to scan a simulated network equipped with industrial devices before evaluating the new algorithms on a real-world industrial network. The test system used the Modbus/TCP protocol to send data packets over a network. The network featured an Ethernet switch that connected personal computers, programmable logic controllers (PLCs) and input/out (I/O) modules. Such industrial computing devices send commands and record data for automated robots and mechanized equipment.

“We had to customize the previous algorithms to recognize the different ways the Modbus/TCP protocol grouped data packets in sequences and time signatures,” said Jonathan Esquivel, an SwRI computer scientist.

The newly developed algorithms applied to the test network recognized normal Modbus/TCP traffic and identified cyberattack vectors such as out-of-band timing, address probing and data fuzzing/manipulation. The algorithms classify data packets as “regular” if they come from an uncompromised industrial control device or “attack” if the source is an unexpected or compromised device.

The research team featured experts from SwRI’s Critical Systems Department, which specializes in embedded systems and cyber security, and the Institute’s Manufacturing Technologies Department, which specializes in software and hardware integration for robotics and industrial automation.

“Business trends and new technology — driven in part by a pandemic push toward automation — are revealing more cyber vulnerabilities across industrial systems,” said Dr. Steven Dellenback, vice president of SwRI’s Intelligent Systems Division. “We are proud to support government and industry with multidisciplinary expertise in cybersecurity and automation technologies.”

For more information, visit https://www.swri.org/industries/cyber-security-services and https://www.swri.org/industries/industrial-robotics-automation.

Test Network Design

Credit: Southwest Research Institute

SAN ANTONIO — May 2, 2022 — Southwest Research Institute has developed technology to help government and industry detect cyber threats to industrial networks used in critical infrastructure and manufacturing systems. SwRI funded the research to address emerging cyber threats in the rapidly evolving ecosystem for industrial automation.

The team used algorithms to scan for cyber threats across network protocols that transmit industrial control data for everything from natural gas pipelines to manufacturing robots. The research led to development of an intrusion detection system (IDS) for industrial control systems (ICS).

“Historically, industrial control systems were not designed with security in mind,” said Ian R. Meinzen, an SwRI intelligent machines engineer who worked on the project. “They had the benefit of an ‘air gap’ where they could operate securely without a connection to IT networks.”

Unplugging industrial networks from information technology (IT) networks, however, is no longer an option for modern automation systems that rely on the internet of things (IoT) to transmit vast amounts of data. IoT describes the network of physical objects embedded with sensors and software to connect and exchange data with other devices and systems via communications networks over the internet.

“Connecting IoT devices and other hardware exposes industrial networks to security vulnerabilities,” said Peter Moldenhauer, an SwRI computer scientist specializing in cybersecurity. “Attacks can occur through an IoT device or even network protocols and outdated software.”

The SwRI team focused this research on scanning for cyberattacks over the Modbus/TCP protocol. Utilities and industry have used this Ethernet-based networking protocol for decades in supervisory controls and data acquisition (SCADA) systems equipment.

SwRI researchers originally developed the algorithms to scan Controller Area Network (CAN) bus networks used in automotive hardware. They customized cybersecurity algorithms to scan a simulated network equipped with industrial devices before evaluating the new algorithms on a real-world industrial network. The test system used the Modbus/TCP protocol to send data packets over a network. The network featured an Ethernet switch that connected personal computers, programmable logic controllers (PLCs) and input/out (I/O) modules. Such industrial computing devices send commands and record data for automated robots and mechanized equipment.

“We had to customize the previous algorithms to recognize the different ways the Modbus/TCP protocol grouped data packets in sequences and time signatures,” said Jonathan Esquivel, an SwRI computer scientist.

The newly developed algorithms applied to the test network recognized normal Modbus/TCP traffic and identified cyberattack vectors such as out-of-band timing, address probing and data fuzzing/manipulation. The algorithms classify data packets as “regular” if they come from an uncompromised industrial control device or “attack” if the source is an unexpected or compromised device.

The research team featured experts from SwRI’s Critical Systems Department, which specializes in embedded systems and cyber security, and the Institute’s Manufacturing Technologies Department, which specializes in software and hardware integration for robotics and industrial automation.

“Business trends and new technology — driven in part by a pandemic push toward automation — are revealing more cyber vulnerabilities across industrial systems,” said Dr. Steven Dellenback, vice president of SwRI’s Intelligent Systems Division. “We are proud to support government and industry with multidisciplinary expertise in cybersecurity and automation technologies.”

For more information, visit https://www.swri.org/industries/cyber-security-services and https://www.swri.org/industries/industrial-robotics-automation.



Share12Tweet7Share2ShareShareShare1

Related Posts

Dr. Khaldoon Alaswad, Henry Ford Health

Henry Ford cardiologist to perform a live heart procedure at International Medical Education event

May 17, 2022
Dibya Raj Adhikari and Samik Bhattacharya

Aerodynamics of perching birds could inform aircraft design

May 17, 2022

Friendly fungi announce themselves to their hosts

May 17, 2022

Infrared imaging to measure glymphatic function

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesViolence/CriminalsVehiclesVirologyVirusZoology/Veterinary ScienceUrbanizationUniversity of WashingtonWeather/StormsUrogenital SystemWeaponryVaccine

Recent Posts

  • Henry Ford cardiologist to perform a live heart procedure at International Medical Education event
  • Aerodynamics of perching birds could inform aircraft design
  • Friendly fungi announce themselves to their hosts
  • Infrared imaging to measure glymphatic function
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....