• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, April 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Study shows survival mechanism for cells under stress

Bioengineer by Bioengineer
March 29, 2021
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy: Anniina Vihervaara

New research reveals how cancer cells endure stress and survive. Publishing in Molecular Cell, an international research team identified mechanisms that human and mouse cells use to survive heat shock and resume their original function – and even pass the memory of the experience of stress down to their daughter cells.

Lead author Anniina Vihervaara, Assistant Professor in Gene Technology at KTH Royal Institute of Technology, says the results provide insight into the mechanisms that coordinate transcription in cells, which potentially could make a vital contribution in disease research.

The researchers examined how embryonic fibroblast cells and cancer cells responded when subjected to heat shock at a temperature of 42C, using advanced technology to monitor the process of transcription across genes and their regulatory regions. Heat shock causes acute proteotoxic stress due to misfolding and aggregation of proteins. To adjust and maintain stability, stressed cells reduce protein synthesis and increase expression of chaperones that help other proteins to maintain their correct configuration. The heat shock response and protein misfolding are involved in many diseases, including cancer, Huntington’s and Alzheimer’s.

The mouse embryonic cells used in the study were sensitive to stress and did not survive prolonged or repeated heat shocks, but a model of cancer cells fared better – they survived multiple episodes of stress and maintained their rate of proliferation.

“Cancer cells are professional survivors and that’s what we saw in this study,” Vihervaara says.

How they did so proved remarkable, she says. The heat shock completely changes the transcriptional program of cells. Within minutes the cells switch to survival mode, inducing hundreds of genes, while repressing thousands more, she says.

Cells retain the repressed genes in a rapidly activable state by pausing transcription machinery at the early part of the gene. Once the stress is relieved, the cells recover within hours by allowing the transcription to continue, and the cell returns to executing its cell-type-specific transcription program.

Yet the revelations didn’t stop there. The researchers observed how the cell transmits the transcriptional memory of its reaction to its daughter cells, that is, those cells that bud from cell division.

“Autophagocytosis-related genes in cells were activated faster if the parental cells had experienced stress. These genes help the cell to get rid of misfolded proteins,” she says. “Cancer cells also slowed RNA processing at the ends of the genes to reduce the burden for protein production.”

Vihervaara’s group at KTH’s joint research center, Science for Life Laboratory (SciLifeLab), uses a technique (Precision Run-On sequencing) that monitors the progression of transcription at genes and enhancers at a nucleotide-resolution across the genome, followed by advanced data-analyses.

“Our aim is to bring this technical knowledge to physiological settings, where it can contribute to medical research,” she says. “But first we need to understand the mechanisms of transcriptional reprogramming in model cell lines before we can understand them in physiological settings.”

###

Media Contact
Anniina Vihervaara
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2021.03.007

Tags: AlzheimerBiologyBiotechnologycancerCell BiologyMedicine/Healthneurobiology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Philanthropy-backed accelerator advances cancer therapies

April 16, 2021
IMAGE

City of Hope’s Betty Ferrell receives 2021 ONS Lifetime Achievement Award

April 16, 2021

CNIO researchers explain the toxicity of USP7 inhibitors, under development for cancer treatment

April 16, 2021

New research shows breast cancer treatment in patients over age 70 can be safely reduced

April 15, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsZoology/Veterinary ScienceVaccinesWeaponryVirologyVehiclesWeather/StormsUrbanizationVaccineVirusUrogenital SystemUniversity of Washington

Recent Posts

  • On the pulse of pulsars and polar light
  • New understanding of the deleterious immune response in rheumatoid arthritis
  • Scientists call for climate projections as part of more robust biodiversity conservation
  • Quality and quantity of enrichments influence well-being of aquaculture fishes
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In