• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stick to your lane: Hidden order in chaotic crowds

Bioengineer by Bioengineer
March 2, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Have you ever wondered how pedestrians ‘know’ to fall into lanes when they are moving through a crowd, without the matter being discussed or even given conscious thought?

Tilted lane formation

Credit: K. Bacik. B. Bacik, T. Rogers

Have you ever wondered how pedestrians ‘know’ to fall into lanes when they are moving through a crowd, without the matter being discussed or even given conscious thought?

A new theory developed by mathematicians at the University of Bath in the UK led by Professor Tim Rogers explains this phenomenon, and is able to predict when lanes will be curved as well as straight. The theory can even describe the tilt of a wonky lane when people are in the habit of passing on one side rather than the other (for instance, in a situation where they are often reminded to ‘pass on the right’).

This mathematical analysis unifies conflicting viewpoints on the origin of lane formation, and it reveals a new class of structures that in daily life may go unnoticed. The discovery, reported this week (Friday, March 3) in the prestigious journal Science, constitutes a major advance in the interdisciplinary science of ‘active matter’ – the study of group behaviours in interacting populations ranging in scale from bacteria to herds of animals.

Tested in arenas

To test their theory, the researchers asked a group of volunteers to walk across an experimental arena that mimicked different layouts, with changes to entrance and exit gates.

One arena was set up in the style of King’s Cross Station in London. When the researchers looked at the video footage from the experiment, they observed mathematical patterns taking shape in real life.

Professor Rogers said: “At a glance, a crowd of pedestrians attempting to pass through two gates might seem disorderly but when you look more closely, you see the hidden structure. Depending on the layout of the space, you may observe either the classic straight lanes or more complex curved patterns such as ellipses, parabolas, and hyperbolas”.

Lane formation

The single-file processions formed at busy zebra crossings are only one example of lane formation, and this study is likely to have implications for a range of scientific disciplines, particularly in the fields of physics and biology. Similar structures can also be formed by inanimate molecules, such as charged particles or organelles in a cell.

Until now, scientists have given several different explanations for why human crowds and other active systems naturally self-organise into lanes, but none of these theories have been verified. The Bath team used a new analytical approach, inspired by Albert Einstein’s theory of Brownian motion, which makes predictions that can be tested.

Encouraged by the way their theory agreed with the numerical simulations of colliding particles, they then teamed up with Professor Bogdan Bacik – an experimentalist from the Academy of Physical Education in Katowice, Poland – and ran a series of experiments (such as the one modelled on King’s Cross) using human crowds.

Lead author Dr Karol Bacik said: “Lane formation doesn’t require conscious thought – the participants of the experiment were not aware that they had arranged themselves into well-defined mathematical curves.

“The order emerges spontaneously when two groups with different objectives cross paths in a crowded space and try to avoid crashing into each other. The cumulative effect of lots of individual decisions inadvertently results in lanes forming.”

The researchers also tested the effects of externally imposed traffic rules – namely, they instructed the participants to pass others on the right. In agreement with the theoretical prediction, adding this rule changed the lane structure.

“When pedestrians have a preference for right turns, the lanes end up tilting and this introduces frustration that slows people down,” said Dr Bacik.

“What we’ve developed is a neat mathematical theory that forecasts the propensity for lane formation in any given system,” said Professor Rogers, adding: “We now know that much more structure exists than previously thought.”



Journal

Science

DOI

10.1126/science.add8091

Method of Research

Computational simulation/modeling

Subject of Research

People

Article Title

Lane nucleation in complex active flows

Article Publication Date

3-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

The first of many

ISTA welcomes first journalists in residence

March 28, 2023
Exosomes from cancer-associated fibroblasts may suppress malignant melanoma

Candidate found to inhibit malignant melanoma growth

March 28, 2023

Cancer that spreads to the lung maneuvers to avoid being attacked by “killer” T cells

March 28, 2023

Graphenest and Hubron to explore development and commercialization of graphene

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ISTA welcomes first journalists in residence

Candidate found to inhibit malignant melanoma growth

Cancer that spreads to the lung maneuvers to avoid being attacked by “killer” T cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In