• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Spin transport measured through molecular films now long enough to develop spintronic devices

Bioengineer by Bioengineer
January 24, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Information processing devices—such as smartphones—are becoming more sophisticated because their information recording density constantly increases, thanks to advances in microfabrication technology. In recent years, however, the physical limits to processing are rapidly approaching, making further miniaturization difficult. Perhaps, though, the continued demand for more sophisticated technology requires a fundamental change in operating principles, so that faster, smaller, new devices can continue being made.

Schematic illustration of the spin transport demonstration of αNPD molecular thin film

Credit: Eiji Shikoh, Osaka Metropolitan University

Information processing devices—such as smartphones—are becoming more sophisticated because their information recording density constantly increases, thanks to advances in microfabrication technology. In recent years, however, the physical limits to processing are rapidly approaching, making further miniaturization difficult. Perhaps, though, the continued demand for more sophisticated technology requires a fundamental change in operating principles, so that faster, smaller, new devices can continue being made.

To meet this demand, a technology called spintronics—using the magnetic spin and the charge of electrons—is attracting attention as a key technology, that could unlock the next generation of advanced electronics. By aligning the direction of a magnetic spin and moving it like an electric current, it is possible to propagate information using very little power and generate less waste heat.

A research group, led by Professors Eiji Shikoh and Yoshio Teki of the Osaka Metropolitan University Graduate School of Engineering, has successfully measured spin transport, at room temperature, in a thin film of alpha-naphthyl diamine derivative (αNPD) molecules, a well-known material in organic light emitting diodes. This molecular thin film was found to have a spin diffusion length of approximately 62 nanometers, a distance that they expect can be used in practical applications.

To use spin transport to develop spintronics technology requires having a spin diffusion length in the tens of nanometer range at room temperature for accurate processing. The thin molecular film of αNPD with a spin diffusion length of 62 nanometers—a long distance for molecular materials—was fabricated for this study by thermal evaporation in vacuum. While electricity has been used to control spin transport in the past, this new thin αNPD molecular film is photoconductive, making it possible to control spin transport using visible light.

“For practical use, it will be necessary to uncover more details about spin injection and spin transport mechanisms through thin molecular films to control spin transport,” noted Professor Shikoh. “Further research is expected to lead to the realization of super energy-efficient devices that use small amounts of power and have little risk of overheating.”

The research results were published in the online bulletin of Solid State Communications on December 8, 2022.

###

About OMU 

Osaka Metropolitan University is a new public university established by a merger between Osaka City University and Osaka Prefecture University in April 2022. For more science news, see https://www.omu.ac.jp/en/, and follow @OsakaMetUniv_en, or search #OMUScience. 



Journal

Solid State Communications

DOI

10.1016/j.ssc.2022.115035

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Spin transport properties in a naphthyl diamine derivative film investigated by the spin pumping

Article Publication Date

8-Dec-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In