• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, May 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Technology

Rewrite Process innovations to enable viable enzymatic poly(ethylene terephthalate) recycling as a headline for a science magazine post, using no more than 8 words

Bioengineer by Bioengineer
May 6, 2025
in Technology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

blank

Enzymatic depolymerization of poly(ethylene terephthalate) (PET) has received considerable attention for closed-loop polyester recycling. However, current approaches for enzymatic PET recycling face challenges to achieve commercial viability with lower environmental impacts compared with virgin polyester manufacturing. Here we present multiple process innovations for enzymatic PET recycling that enable economic and environmental feasibility. We show that substrate amorphization through extrusion and quenching is energy-efficient and enables near-quantitative enzymatic conversion in 50 h. Using ammonium hydroxide for pH control and thermolysis of the isolated diammonium terephthalate salt reduces the acid and base consumption by >99%, lowering annual operating expenses by 74%. Fed-batch processing increased ethylene glycol concentration, leading to a 65% reduction in energy consumption for ethylene glycol recovery. These improvements were modeled in an optimal process, with recycled PET estimated to be US$1.51 kg−1 relative to US domestic virgin PET at US$1.87 kg−1 and eliminating key life cycle obstacles to scale this technology.

Murphy, N.P., Dempsey, S.H., DesVeaux, J.S. et al. Process innovations to enable viable enzymatic poly(ethylene terephthalate) recycling.
Nat Chem Eng (2025).

bu içeriği en az 2500 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 14 paragraf ve her bir paragrafta da en az 80 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:

Article Title:

Article References:

Murphy, N.P., Dempsey, S.H., DesVeaux, J.S. et al. Process innovations to enable viable enzymatic poly(ethylene terephthalate) recycling.
Nat Chem Eng (2025). https://doi.org/10.1038/s44286-025-00212-y

Image Credits: AI Generated

DOI:

Keywords:

Tags: advancements in polyester recycling technologychallenges in enzymatic polymer depolymerizationclosed-loop recycling of plasticseconomic feasibility of enzymatic PETenergy-efficient recycling processesenvironmental impact of PET recyclingenzymatic recycling of polyethylene terephthalatefed-batch processing in polymer recyclinglife cycle analysis of PET recyclingprocess innovations for PET recyclingreduction of operating expenses in recyclingsubstrate amorphization in recycling

Share12Tweet8Share2ShareShareShare2

Related Posts

Jozef Nissimov

Pristine Waters, Concealed Hazards: Unveiling Toxic Threats

May 12, 2025
Researcher inspects the team's neuromorphic vision device

Compact Innovation Offers Cutting-Edge Technology with a Personal Touch

May 12, 2025

Smartphone Use and Wellbeing in Children Explored

May 12, 2025

Silicon Spin Qubits: A Significant Advancements in Quantum Computing

May 12, 2025

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    664 shares
    Share 265 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    87 shares
    Share 35 Tweet 22
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17
  • Analysis of Research Grant Terminations at the National Institutes of Health

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measles Virus Identified in Houston Wastewater Ahead of Clinical Case Reports

Pristine Waters, Concealed Hazards: Unveiling Toxic Threats

UMGCCC Researchers Present New Insights on Lifetime Alcohol Consumption and Colorectal Cancer Risk at AACR 2025

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.