• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rewrite Keypoint localization and parameter measurement in ultrasound biomicroscopy anterior segment images based on deep learning as a headline for a science magazine post, using no more than 7 words

Bioengineer by Bioengineer
May 6, 2025
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

blank

Keypoint localization and parameter measurement in ultrasound biomicroscopy anterior segment images based on deep learning

BioMedical Engineering OnLine

volume 24, Article number: 53 (2025)
Cite this article

Background

Accurate measurement of anterior segment parameters is crucial for diagnosing and managing ophthalmic conditions, such as glaucoma, cataracts, and refractive errors. However, traditional clinical measurement methods are often time-consuming, labor-intensive, and susceptible to inaccuracies. With the growing potential of artificial intelligence in ophthalmic diagnostics, this study aims to develop and evaluate a deep learning model capable of automatically extracting key points and precisely measuring multiple clinically significant anterior segment parameters from ultrasound biomicroscopy (UBM) images. These parameters include central corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter (PD), angle-to-angle distance (ATA), sulcus-to-sulcus distance (STS), lens thickness (LT), and crystalline lens rise (CLR).

Methods

A data set of 716 UBM anterior segment images was collected from Tianjin Medical University Eye Hospital. YOLOv8 was utilized to segment four key anatomical structures: cornea–sclera, anterior chamber, pupil, and iris–ciliary body—thereby enhancing the accuracy of keypoint localization. Only images with intact posterior capsule lentis were selected to create an effective data set for parameter measurement. Ten keypoints were localized across the data set, allowing the calculation of seven essential parameters. Control experiments were conducted to evaluate the impact of segmentation on measurement accuracy, with model predictions compared against clinical gold standards.

Results

The segmentation model achieved a mean IoU of 0.8836 and mPA of 0.9795. Following segmentation, the binary classification model attained an mAP of 0.9719, with a precision of 0.9260 and a recall of 0.9615. Keypoint localization exhibited a Euclidean distance error of 58.73 ± 63.04 μm, improving from the pre-segmentation error of 71.57 ± 67.36 μm. Localization mAP was 0.9826, with a precision of 0.9699, a recall of 0.9642 and an FPS of 32.64. In addition, parameter error analysis and Bland–Altman plots demonstrated improved agreement with clinical gold standards after segmentation.

Conclusions

This deep learning approach for UBM image segmentation, keypoint localization, and parameter measurement is feasible, enhancing clinical diagnostic efficiency for anterior segment parameters.

Qinghao, M., Sheng, Z., Jun, Y. et al. Keypoint localization and parameter measurement in ultrasound biomicroscopy anterior segment images based on deep learning.
BioMed Eng OnLine 24, 53 (2025). https://doi.org/10.1186/s12938-025-01388-3

https://doi.org/10.1186/s12938-025-01388-3 bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:
Article Title:
Article References:

Qinghao, M., Sheng, Z., Jun, Y. et al. Keypoint localization and parameter measurement in ultrasound biomicroscopy anterior segment images based on deep learning.
BioMed Eng OnLine 24, 53 (2025). https://doi.org/10.1186/s12938-025-01388-3

Image Credits: AI Generated

DOI: https://doi.org/10.1186/s12938-025-01388-3

Keywords:

Tags: advancements in biomedical engineeringAI-driven imaging solutions for eye healthanterior segment parameter measurementartificial intelligence in eye careautomated measurement techniques in ophthalmologydeep learning in ophthalmic diagnosticsimproving glaucoma diagnosis with AIkeypoint localization in UBM imagesmeasuring central corneal thickness accuratelyophthalmic condition management innovationsreducing inaccuracies in clinical measurementsultrasound biomicroscopy applications

Tags: AI-driven anterior segment analysisautomated ophthalmic measurementbiomedical engineering innovationsdeep learning in ultrasound biomicroscopyUBM image processing
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Dual Agonist Reverses Fatty Liver, Boosts Insulin

May 21, 2025
New PREVENT Equation Accurately Predicts 10-Year CVD Risk and Detects Calcium Buildup

New PREVENT Equation Accurately Predicts 10-Year CVD Risk and Detects Calcium Buildup

May 21, 2025

Study Finds Infrequent Stroke Monitoring Is Safe, Effective, and Frees Up Resources

May 21, 2025

Comparing First Trimester Preeclampsia Screening in Indonesia

May 21, 2025

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    67 shares
    Share 27 Tweet 17
  • Scientists Discover New Electricity-Conducting Species, Honor Tribe in Naming

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bioluminescent Tattoos Transform Urban Architecture

Revolutionary Nano-Engineered Thermoelectrics Pave the Way for Scalable, Compressor-Free Cooling Solutions

Rapid, Affordable Targeted Sequencing Diagnoses Cobalamin C Disease

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.