• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rewrite Autonomic physiological coupling of the global fMRI signal as a headline for a science magazine post, using no more than 8 words

Bioengineer by Bioengineer
May 7, 2025
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

blank

The brain is closely attuned to visceral signals from the body’s internal environment, as evidenced by the numerous associations between neural, hemodynamic and peripheral physiological signals. Here we show that a major mode of these brain–body cofluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo functional magnetic resonance imaging (fMRI) data acquisition sequences, we identify widespread cofluctuations in the low-frequency range (0.01–0.1 Hz) between resting-state global fMRI signals, electroencephalogram (EEG) activity, and a host of peripheral autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain–body cofluctuations observed at rest are elicited by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Furthermore, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot fully explain the origin of these signals in the brain. These findings suggest that the global fMRI signal is a substantial component of the arousal response governed by the autonomic nervous system.

Bolt, T., Wang, S., Nomi, J.S. et al. Autonomic physiological coupling of the global fMRI signal.
Nat Neurosci (2025).

bu içeriği en az 2500 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 14 paragraf ve her bir paragrafta da en az 80 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:

Article Title:

Article References:

Bolt, T., Wang, S., Nomi, J.S. et al. Autonomic physiological coupling of the global fMRI signal.
Nat Neurosci (2025). https://doi.org/10.1038/s41593-025-01945-y

Image Credits: AI Generated

DOI:

Keywords:

Tags: autonomic nervous system and brain connectivitybrain-body cofluctuations in fMRIdeep breathing effects on brain signalsexperimental fMRI and carbon dioxide variationsglobal fMRI signal and physiological signalshemodynamic responses in brain researchinfluence of respiration on fMRI signalslow-frequency neural and cardiovascular interactionsperipheral autonomic signals in neuroscienceresting-state fMRI and EEG correlationsspatiotemporal patterns in brain activityunderstanding visceral signals in brain function

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Dual Agonist Reverses Fatty Liver, Boosts Insulin

May 21, 2025
New PREVENT Equation Accurately Predicts 10-Year CVD Risk and Detects Calcium Buildup

New PREVENT Equation Accurately Predicts 10-Year CVD Risk and Detects Calcium Buildup

May 21, 2025

Study Finds Infrequent Stroke Monitoring Is Safe, Effective, and Frees Up Resources

May 21, 2025

Comparing First Trimester Preeclampsia Screening in Indonesia

May 21, 2025

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    67 shares
    Share 27 Tweet 17
  • Scientists Discover New Electricity-Conducting Species, Honor Tribe in Naming

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bioluminescent Tattoos Transform Urban Architecture

Revolutionary Nano-Engineered Thermoelectrics Pave the Way for Scalable, Compressor-Free Cooling Solutions

Rapid, Affordable Targeted Sequencing Diagnoses Cobalamin C Disease

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.