• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Revealing the mysteries of the universe under the skin of an atomic nucleus

Bioengineer by Bioengineer
October 12, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Massive neutron stars colliding in space are thought to be able to create precious metals such as gold and platinum. The properties of these stars are still an enigma, but the answer may lie beneath the skin of one of the smallest building blocks on Earth – an atomic nucleus of lead. Getting the nucleus of the atom to reveal the secrets of the strong force that governs the interior of neutron stars has proven difficult. Now a new computer model from Chalmers University of Technology, Sweden, can provide answers.

Revealing the mysteries of the universe under the skin of an atomic nucleus

Credit: JingChen | Chalmers University of Technology | Yen Strandqvist

Massive neutron stars colliding in space are thought to be able to create precious metals such as gold and platinum. The properties of these stars are still an enigma, but the answer may lie beneath the skin of one of the smallest building blocks on Earth – an atomic nucleus of lead. Getting the nucleus of the atom to reveal the secrets of the strong force that governs the interior of neutron stars has proven difficult. Now a new computer model from Chalmers University of Technology, Sweden, can provide answers.

In a recently published article in the scientific journal Nature Physics, Chalmers researchers present a breakthrough in the calculation of the atomic nucleus of the heavy and stable element lead.

The strong force plays the main role
Despite the huge size difference between a microscopic atomic nucleus and a neutron star several kilometers in size, it is largely the same physics that governs their properties. The common denominator is the strong force that holds the particles – the protons and neutrons – together in an atomic nucleus. The same force also prevents a neutron star from collapsing. The strong force is fundamental in the universe, but it is difficult to include in computational models, not least when it comes to heavy neutron-rich atomic nuclei such as lead. Therefore, the researchers have wrestled with many unanswered questions in their challenging calculations.

A reliable way to make calculations
“To understand how the strong force works in neutron-rich matter, we need meaningful comparisons between theory and experiment. In addition to the observations made in laboratories and with telescopes, reliable theoretical simulations are therefore also needed. Our breakthrough means that we have been able to carry out such calculations for the heaviest stable element – lead,” says Andreas Ekström, Associate Professor at the Department of Physics at Chalmers and one of the main authors of the article.

The new computer model from Chalmers, developed together with colleagues in North America and England, now shows the way forward. It enables high precision predictions of properties for the isotope* lead-208 and its so-called ‘neutron skin’.

The thickness of the skin matters
It is the 126 neutrons in the atomic nucleus that form an outer envelope, which can be described as a skin. How thick the skin is, is linked to the properties of the strong force. By predicting the thickness of the neutron skin, knowledge can increase about how the strong force works – both in atomic nuclei and in neutron stars.

“We predict that the neutron skin is surprisingly thin, which can provide new insights into the force between the neutrons. A groundbreaking aspect of our model is that it not only provides predictions, but also has the ability to assess theoretical margins of error. This is crucial for being able to make scientific progress,” says research leader Christian Forssén, Professor at the Department of Physics at Chalmers.

Model used for the spread of the coronavirus
To develop the new computational model, the researchers have combined theories with existing data from experimental studies. The complex calculations have then been combined with a statistical method previously used to simulate the possible spread of the coronavirus.

With the new model for lead, it is now possible to evaluate different assumptions about the strong force. The model also makes it possible to make predictions for other atomic nuclei, from the lightest to the heaviest.

The breakthrough could lead to much more precise models of, for example, neutron stars and increased knowledge of how these are formed.

“The goal for us is to gain a greater understanding of how the strong force behaves in both neutron stars and atomic nuclei. It takes the research one step closer to understanding how, for example, gold and other elements could be created in neutron stars– and at the end of the day it is about understanding the universe,” says Christian Forssén.

For more information, please contact:

Andreas Ekström, Associate Professor, Department of Physics, Chalmers University of Technology, +46 31 772 36 85, [email protected]

Christian Forssén, Professor, Department of Physics, Chalmers University of Technology, +46 31 772 32 61, [email protected]

More about the scientific study

  • The scientific article “Ab initio predictions link the neutron skin of 208Pb to nuclear forces” has been published in Nature Physics and is written by Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, Andreas Ekström, Christian Forssén, Gaute Hagen, Jason D. Holt, Thomas Papenbrock, S. Ragnar Stroberg and Ian Vernon.
  • During the study, the researchers worked at Chalmers University of Technology in Sweden, Durham University in the UK, University of Washington, Oak Ridge National Laboratory, University of Tennessee and Argonne National Laboratory in the USA and TRIUMF and McGill University in Canada.
  • The research has been carried out using some of the world’s most powerful supercomputers. The Chalmers researchers have mainly been funded by the Swedish Research Council and the European Research Council.

*Isotope: An isotope of an element is a variant with a specific number of neutrons.In this case, it is about the isotope lead-208 which has 126 neutrons (and 82 protons).



Journal

Nature Physics

DOI

10.1038/s41567-022-01715-8

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Ab initio predictions link the neutron skin of 208Pb to nuclear forces

Article Publication Date

22-Aug-2022

COI Statement

The authors declare no competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Testing steel plates with high explosives

How do you create buildings that can withstand the most extreme stress loads?

February 2, 2023
Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

February 2, 2023

Tuberculosis vaccine does not protect elderly against COVID-19

February 2, 2023

Flue2Chem: Science-based industries join forces for first time to address UK net zero targets

February 2, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How do you create buildings that can withstand the most extreme stress loads?

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Tuberculosis vaccine does not protect elderly against COVID-19

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In