• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research on the raw materials dilemma: High-tech metals germanium and gallium from the deep sea?

Bioengineer by Bioengineer
May 10, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In 2020, 66 percent of global germanium production came from China; for gallium, Chinese market dominance is even greater at 97 percent. Because of this dependence and the associated risks to raw material supplies, both the U.S. government and the European Union have included these metals in their lists of critical raw materials. A great deal of effort is being put into searching for deposits around the world, especially since demand for these metals is expected to increase dramatically in the coming years. But the search for raw materials is proving difficult, and unconventional deposits are also coming into the spotlight.

Research on Raw Materials

Credit: Jacobs University Bremen

In 2020, 66 percent of global germanium production came from China; for gallium, Chinese market dominance is even greater at 97 percent. Because of this dependence and the associated risks to raw material supplies, both the U.S. government and the European Union have included these metals in their lists of critical raw materials. A great deal of effort is being put into searching for deposits around the world, especially since demand for these metals is expected to increase dramatically in the coming years. But the search for raw materials is proving difficult, and unconventional deposits are also coming into the spotlight.

One way to secure the global supply of critical raw materials could be deep-sea mining. Although it is controversial because of its unclear effects on the environment, it could supply large amounts of the many metals without which, for example, climate policy goals such as the energy transition cannot be realized. Recycling is not yet a solution for critical raw materials in the foreseeable future, as these metals have not yet been used in large quantities.

The research group CritMET: Critical Metals for Enabling Technologies, which is part of the Earth and Environmental Science and Technology study program at Jacobs University, investigates both potential raw material sources and the environmental behavior of critical raw materials such as the rare earths, germanium, and gallium. The articles now published summarize the research results of the group around Katharina Schier and David Ernst, Professors Michael Bau and Dieter Garbe-Schönberg, and national and international cooperation partners.

The iron-manganese crusts studied form very slowly on the seafloor of the deep sea. In the process, they trap and accumulate a variety of metals dissolved in seawater. Using new analytical methods, the working group succeeded in reliably determining the concentrations of gallium and germanium in such crusts. The results are of great importance for basic geochemical research, because they help to better understand the transport of metals from the landmasses to the oceans.

For applied research, however, they are rather disillusioning: The contents of gallium and germanium are too low to make the crusts a source of raw materials for these metals in the foreseeable future. But the results also have a positive side, because the researchers were able to show how effectively gallium and germanium are attached to iron oxides and that they can thus be effectively removed from the water and thus from the environment. As all critical metals are released into the environment, and thus into rivers, lakes and groundwater, in ever-increasing quantities due to their dramatically increasing industrial use, processes to prevent this or to clean up the water are crucial. The use of iron oxides may be a rather simple and inexpensive solution for germanium and gallium.



DOI

10.1016/j.chemgeo.2022.120791

Article Title

Fractionation of germanium and silicon during scavenging from seawater by marine Fe (oxy)hydroxides: Evidence from hydrogenetic ferromanganese crusts and nodules

Article Publication Date

20-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Human functioning beyond disability and disease

New health indicator can revolutionize how we measure and achieve well-being

May 31, 2023
Scientist in laboratory

Biological cleanup discovered for certain “forever chemicals”

May 31, 2023

The clams that fell behind, and what they can tell us about evolution and extinction

May 31, 2023

Shedding light on the complex flow dynamics within the small intestine

May 31, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New health indicator can revolutionize how we measure and achieve well-being

Biological cleanup discovered for certain “forever chemicals”

The clams that fell behind, and what they can tell us about evolution and extinction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In