• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 23, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Remote sensing research improves hurricane response

Bioengineer by Bioengineer
May 13, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Safe and uninterrupted road travel is crucial in the aftermath of storms so that people can access medical treatment, downed power lines can be removed and communities can begin a return to normalcy.

Hurricane Michael

Credit: Courtesy of NOAA

Safe and uninterrupted road travel is crucial in the aftermath of storms so that people can access medical treatment, downed power lines can be removed and communities can begin a return to normalcy.

Researchers with the FAMU-FSU College of Engineering’s Resilient Infrastructure and Disaster Response (RIDER) Center are investigating better ways to predict where road-clogging debris will be most severe after tropical cyclones. Their latest paper was published in the International Journal of Disaster Risk Reduction.

“This research is especially relevant as hurricane season approaches because it reminds us that we need a variety of tools to properly respond to these storms,” said Eren Ozguven, RIDER Center director and the paper’s senior author. “This paper describes an important tool and applies it to disasters in the Florida Panhandle.”

Researchers used satellite images to measure the amount of vegetation in Bay County, Florida, before and after two tropical storms and three hurricanes, including Hurricane Michael, a Category 5 storm that devastated the county in 2018. That gave them an estimate of how much vegetative debris those storms caused and where debris was heaviest. They were able to correlate debris measurements with factors such as wind speed, initial amount of vegetation and roadway density.

The researchers found debris was heavier in suburban and urban areas, which have a high density of people and roads, compared with rural areas. Although vegetation is not the only type of debris caused by a hurricane, it is an important predictor of where roads will be blocked.

Researchers aim to develop a tool that gives emergency management planners an estimate of the debris storms are likely to generate – allowing officials to plan, for example, where to position trucks and collection zones ahead of storms.

“The faster you can get debris off the roadway, the better you will be in terms of getting back to normal after a hurricane hits,” said paper co-author Tarek Abichou, a professor of civil and environmental engineering at the FAMU-FSU College of Engineering.

Along with understanding where to position resources before a storm, officials can use satellite imagery after a hurricane to quickly and inexpensively get an idea of post-storm damage before deploying first responders.

The work is part of RIDER’s efforts to use remote-sensing technology to solve civil engineering problems.

“Engineering is all about finding solutions despite obstacles, and hurricanes throw up all sorts of obstacles,” Abichou said. “Improving our ability to use remote sensing to prepare for and recover from storms will help us overcome those challenges.”

Former FAMU-FSU College of Engineering doctoral student Alican Karaer served as the paper’s lead author. Co-authors were Mingyang Chen of Harbin Institute of Technology; former FAMU-FSU College of Engineering doctoral student Mahyar Ghorbanzadeh; and Michele Gazzea and Reza Arghandeh of the Western Norway University of Applied Sciences.

This paper was supported by the National Science Foundation Coastlines and People (CoPe) Award 1940319.



Journal

International Journal of Disaster Risk Reduction

DOI

10.1016/j.ijdrr.2022.102857

Article Title

Remote sensing-based comparative damage assessment of historical storms and hurricanes in Northwestern Florida

Article Publication Date

1-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

DeepSqueak, a deep learning tool, can classify underwater acoustic signals

DeepSqueak tool identifies marine mammal calls #ASA182

May 23, 2022
Watching corals breathe: The setup

Microparticles with feeling

May 23, 2022

The limits of vision: Seeing shadows in the dark

May 23, 2022

Planets of binary stars as possible homes for alien life

May 23, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesUrbanizationWeather/StormsVaccineZoology/Veterinary ScienceVirusViolence/CriminalsUniversity of WashingtonWeaponryVirologyVaccinesUrogenital System

Recent Posts

  • DeepSqueak tool identifies marine mammal calls #ASA182
  • Microparticles with feeling
  • The limits of vision: Seeing shadows in the dark
  • Planets of binary stars as possible homes for alien life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....