• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Recycling of valuable metals from spent lithium ion batteries using spinning reactors

Bioengineer by Bioengineer
May 2, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a world that is slowly distancing itself from carbon-based energy, there has been a meteoric rise in the use of lithium-ion batteries as a next-generation energy storage solution. However, this has resulted in another problem – an increase in the amount of lithium battery waste. Lithium-ion batteries degrade slowly over their lifetime, losing anywhere from 12% to 24% of their total capacity over 500 charging and discharging cycles. The electrolyte and other materials inside the battery can also degrade, causing a decrease in capacity over time. The disposal of lithium batteries in landfills or incineration can pose environmental and safety concerns due to the potential for toxic elements to leach into the soil and water.

Figure 1

Credit: Institute for Basic Science

In a world that is slowly distancing itself from carbon-based energy, there has been a meteoric rise in the use of lithium-ion batteries as a next-generation energy storage solution. However, this has resulted in another problem – an increase in the amount of lithium battery waste. Lithium-ion batteries degrade slowly over their lifetime, losing anywhere from 12% to 24% of their total capacity over 500 charging and discharging cycles. The electrolyte and other materials inside the battery can also degrade, causing a decrease in capacity over time. The disposal of lithium batteries in landfills or incineration can pose environmental and safety concerns due to the potential for toxic elements to leach into the soil and water.

Recycling lithium batteries requires extensive use of hydrometallurgy, a branch of metallurgy involving aqueous solutions. Briefly, the used battery is dismantled and valuable metals are extracted using solvent, followed by stripping where extracted metal is recovered and the solvent is recycled. The current lithium battery recycling requires multiple steps of extraction-stripping processes, each requiring separate reactors and different parameters. This significantly drives up the complexity and cost of recycling, hence the recycling rate of lithium batteries is very low.

There have been numerous attempts to devise a single-step, one-pot solution by partitioning the reactor using membranes. However, these ideas have failed in larger reactors, mostly due to membrane failures, especially under strong stirring.

To address this issue, an interdisciplinary research group led by Professor Bartosz A. GRZYBOWSKI at the Center of Soft and Living Matter within the Institute for Basic Science (IBS), South Korea, reported a novel method for recycling valuable metals such as lithium, nickel, and cobalt, from spent lithium-ion batteries. Gryzbowski’s group has been famous in the field for their spinning ‘concentric liquid reactors’, which were proven to be effective in carrying out multi-step reactions in a single chamber. This time, the group successfully applied this concept to simplify the extraction-stripping process for lithium battery recycling.

The horizontally rotating reactor, which was designed by co-author Dr. Olgierd CYBULSKI, can process complex metal mixtures in which aqueous feed, organic extractant, and aqueous acceptor phases are all present in the same, rotating vessel. Unlike the one-pot setups that use membranes, this reactor can be vigorously stirred and emulsified without the coalescence of aqueous layers. The arrangement of higher-pH “feed”, organic extractant (“shuttle”), and lower-pH “acceptor” phases is robustly maintained by placing all these liquids in a rotating vessel in a way that they form concentric layers stable enough to allow efficient interfacial mixing, but without coalescing the aqueous layers.

Impressively, this process “can perform the separation of metals in a matter of minutes, using a low concentration of extracting agents and with high selectivity”, according to co-author Dr. Cristóbal QUINTANA.

This study demonstrates that concentric liquid reactors, and especially their segmented versions, can rapidly separate valuable metals from highly concentrated mixtures using much lower concentrations of extractants than in existing methods and can access unexplored ranges of process parameters.

These aspects, as well as favorable power-to-operate vs. reactor-size scaling, make concentric liquid reactors an interesting alternative to the traditional hydrometallurgical methods and potentially applicable to the separations of other valuable metals. Professor Grzybowski explains, “The technology is also forward-looking in the sense that, as we show, it is tunable to different “feed” metal compositions and of course, to metals other than those used in batteries.”



Journal

Advanced Materials

DOI

10.1002/adma.202211946

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

One-Pot, Three-Phase Recycling of Metals from Li-Ion Batteries in Rotating, Concentric-Liquid Reactors

Article Publication Date

16-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Block diagram of the proposed full-duplex (FD) transceiver

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

June 9, 2023
New method takes the uncertainty out of oxide semiconductor layering

New method takes the uncertainty out of oxide semiconductor layering

June 9, 2023

Researchers to explore potential of new treatment against vascular dementia

June 9, 2023

University of Arizona launching computer science and engineering B.S.

June 8, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In