• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, June 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Promising building blocks for photonic quantum simulators

Bioengineer by Bioengineer
May 26, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Niels Bohr Institute have, collaborating with the University of Münster and Ruhr-Universität Bochum, developed new technology capable of processing the enormous amounts of information quantum systems generate. Deterministic single photon light sources, creating quantum bits at extreme rates and speed are now coupled to specially designed, integrated photonic circuits, capable of processing quantum information with adequate speed and quality without degrading the susceptible quantum states. This means that the first steps have been taken towards the development of photonic quantum devices that can, for example, describe and simulate other complex quantum systems – like the vibrational dynamics of biological molecules. The result is published in Science Advances.

High-speed thin-film lithium niobate quantum processor

Credit: Stefano Paesani

Researchers at the Niels Bohr Institute have, collaborating with the University of Münster and Ruhr-Universität Bochum, developed new technology capable of processing the enormous amounts of information quantum systems generate. Deterministic single photon light sources, creating quantum bits at extreme rates and speed are now coupled to specially designed, integrated photonic circuits, capable of processing quantum information with adequate speed and quality without degrading the susceptible quantum states. This means that the first steps have been taken towards the development of photonic quantum devices that can, for example, describe and simulate other complex quantum systems – like the vibrational dynamics of biological molecules. The result is published in Science Advances.

The long haul now shows its value

Professor Peter Lodahl and the research group Quantum Photonics at the Niels Bohr Institute, University of Copenhagen have worked in this field for nearly twenty years. In short, it is all about the use of single photons, the smallest parts of light, used to code quantum information.

This is a rapidly developing field, demonstrating a single-photon encrypted communication link in the autumn of 2022 and a recent record investment in the spin-out business Sparrow Quantum.

At the core of it all are the photon sources developed and refined by the group over many years. Presently with unparalleled control, precision and quality, opening the doors to new research and development in quantum technology.

Quantum simulator – what’s all that about?

As soon as the word “quantum” is on the table it is often followed by the word “computer” – the idea of an extremely strong platform for calculations, with the capacity of dealing with complex problems.

Peter Lodahl says that the work done in connection with this result points in the direction of what they call a “quantum simulator”.

A quantum simulator is a special-purpose computer that simulates quantum systems by processing quantum information (quantum bits) that classical computers have a hard time dealing with.

“The processing of quantum information demands an exponentially increasing capacity on a classical computer when increasing the number of quantum bits. This means that even rather simple quantum mechanical problems cannot be solved on classical computers”, says Stefano Paesani, one of the leading researchers behind the result.

What is the purpose of a quantum simulator?

What does “processing” quantum information mean?  This is where a crucial interdisciplinary element comes in.

Within the framework of the Novo Nordisk Foundation Project, “Solid-State Quantum Simulators for Biochemistry (SolidQ)”, photons, interacting in a photonic circuit, can be used to describe the characteristics of biochemical processes.

You can use one system (photons) to learn about the other system (the biomolecule) because the photonic quantum simulator can process the complex quantum information that describes it. One of the challenges consists in understanding the connection between the two complex quantum systems.

A quantum simulator relies on the congruence between different quantum systems

 “We can learn about one system by studying the other – i.e. you can “map” one system to another. The initial insight into a complex system is crucial, however.

For example, there is a natural mapping occurring between photons and the vibration dynamics of molecules: When a molecule vibrates its evolution is described by the same quantum mechanical operation that describes photons sent through a circuit.”, says Peter Lodahl.

Technologies must “shake hands”

The challenge is to process the photons blasting away at the speed of light and in high numbers. It must happen extremely quickly and without loss. Not too many errors are allowed to happen. 

Collaborating with the University of Münster the groups have, over the last two years, developed photonic circuits capable of processing quantum bits from the photonic source – and have made the two systems fit together. The Novo Nordisk Foundation project SolidQ has been all about optimizing the processing of photons.

“The collaboration with Münster is a great example of the fact that the research community takes the first steps. Subsequently, we make a “road map” for up-scaling the technology.

This platform looks very promising indeed and in working with Münster we succeeded in realizing photonic circuits adequately efficient and fast to keep up with our photon sources. We’re opening the door to applications now”, says Stefano Paesani.



Journal

Science Advances

DOI

10.1126/sciadv.adg7268

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter

Article Publication Date

12-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Colusa National Wildlife Refuge

Knowledge coproduction: Working together to solve a complex conservation problem

June 6, 2023
Manipulating topological edge states for optical channel switcher.

Revolutionizing optical control with topological edge states

June 6, 2023

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

June 6, 2023

Does multimorbidity impact chronic disease treatment?

June 6, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Knowledge coproduction: Working together to solve a complex conservation problem

Revolutionizing optical control with topological edge states

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In