• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pakistan streamflow timing will become three times faster by end of century

Bioengineer by Bioengineer
February 28, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nature has remained in balance for a long time, but climate change due to modern human activities is disrupting the balance of the natural system. The disruption makes it more difficult for humans – who must work with nature to survive – to predict the future. Moreover, developing countries with limited understanding and preparation for climate change are more vulnerable to climate change-driven social and economic damage. Recently, a research team from POSTECH corrected the biases of future regional climate model projection data to better understand  seasonal changes in the streamflow regime in Pakistan’s four main rivers in mid and late 21st Century.

Figure 1

Credit: POSTECH

Nature has remained in balance for a long time, but climate change due to modern human activities is disrupting the balance of the natural system. The disruption makes it more difficult for humans – who must work with nature to survive – to predict the future. Moreover, developing countries with limited understanding and preparation for climate change are more vulnerable to climate change-driven social and economic damage. Recently, a research team from POSTECH corrected the biases of future regional climate model projection data to better understand  seasonal changes in the streamflow regime in Pakistan’s four main rivers in mid and late 21st Century.

 

POSTECH’S research team led by Professor Jonghun Kam (Division of Environmental Science and Engineering) and post-graduate researcher Shahid Ali assessed the past and future changes in streamflow timing of the four major river basins  of Pakistan including Upper Indus, Kabul, Jhelum, and Chenab River basins. The research team used observational data and bias-corrected hydrological projections. This study was recently published in the Journal of Hydrology.

 

Hydrology mainly deals with the cycle of water on Earth and the use of surface water. As the science explores the complexity of the natural water flow, various assumptions, statistics, and mathematical techniques, instead of reproduction in the lab, are used to study precipitation, runoff, infiltration, and streamflow and provide basic knowledge and data for the use of water resources. However, climate change and human activities are changing the water cycle itself, rendering it difficult to solve future problems with past knowledge and data.

 

Pakistan is a representative example of a country suffering severe seasonal changes in streamflow, causing a lack of available water resources for agriculture. To make it worse, the Indus River was inundated over the downstream regions of Pakistan last year, causing catastrophic effects on regional communities. However, understanding of future seasonal changes in streamflow over Pakistan remains limited.

 

The researchers simulated the VIC-river routing model forced by surface and runoff data from six regional climate models. They later corrected the minimum and seasonality bias against observational records. To quantify seasonal changes in the hydrologic regime, they computed half of the annual cumulative streamflows (HSCs) and the dates of reaching to the first quartile (25th percentile), that is, center-of-volume dates (CVDs) from observed and bias-corrected simulated streamflow data.

 

Observational records (1962-2019) showed a significant decreasing trend in CVD by a range between -4.5 and -12.6 days across the three river basins, except for Chenab River basin. Bias-corrected hydrologic projections showed decreased CVD by −4.2 to −6.3 days during the observational period. The four study river basins showed that the decreased CVDs range from −5 to −20 days in the near future (the 2050 to 2059 average) and −11 days to −37 days in the far future (the 2090 to 2099 average).

 

Professor Kam explained, “In late winter, accelerated snow melting processes over mountainous regions in Pakistan can cause changes in available water resources for crop planting in spring. This study highlights diversity in the hydrologic response to a similar magnitude of surface warming in the future climate projection.” He added, “there is an urgent need to prepare basin-specific water resources management and policies in order to adapt to climate change.”

 

This study was supported by the Mid-Career Researcher Program of the National Research Foundation of Korea and the Global Korea Scholarship (GKS) Program of the National Institute for International Education (NIIED), a branch of the Ministry of Education in the Republic of Korea.



Journal

Journal of Hydrology

DOI

10.1016/j.jhydrol.2022.128959

Article Title

Past and future changes toward earlier timing of streamflow over Pakistan from bias-corrected regional climate projections (1962–2099)

Article Publication Date

20-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing nature to promote planetary sustainability

Harnessing nature to promote planetary sustainability

March 31, 2023
blood brain barrier

New study offers clues to how cancer spreads to the brain

March 31, 2023

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

March 31, 2023

Mathematical model provides bolt of understanding for lightning-produced X-rays

March 31, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    48 shares
    Share 19 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing nature to promote planetary sustainability

New study offers clues to how cancer spreads to the brain

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In