• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Owl wing design reduces aircraft, wind turbine noise pollution

Bioengineer by Bioengineer
January 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, January 18, 2022 — Trailing-edge noise is the dominant source of sound from aeronautical and turbine engines like those in airplanes, drones, and wind turbines. Suppressing this noise pollution is a major environmental goal for some urban areas.

The shape of owl wings can inform airfoil designs

Credit: Wang and Liu

WASHINGTON, January 18, 2022 — Trailing-edge noise is the dominant source of sound from aeronautical and turbine engines like those in airplanes, drones, and wind turbines. Suppressing this noise pollution is a major environmental goal for some urban areas.

In Physics of Fluids, by AIP Publishing, researchers from Xi’an Jiaotong University used the characteristics of owl wings to inform airfoil design and significantly reduce the trailing-edge noise.

“Nocturnal owls produce about 18 decibels less noise than other birds at similar flight speeds due to their unique wing configuration,” said author Xiaomin Liu. “Moreover, when the owl catches prey, the shape of the wings is also constantly changing, so the study of the wing edge configuration during owl flight is of great significance.”

Trailing-edge noise is generated when airflow passes along the back of an airfoil. The flow forms a turbulent layer of air along the upper and lower surfaces of the airfoil, and when that layer of air flows back through the trailing edge, it scatters and radiates noise.

Previous studies explored serrated trailing edges, finding that the serrations effectively reduce the noise of rotating machinery. However, the noise reduction was not universal, depending heavily on the final application.

“At present, the blade design of rotating turbomachinery has gradually matured, but the noise reduction technology is still at a bottleneck,” said Liu. “The noise reduction capabilities of conventional sawtooth structures are limited, and some new nonsmooth trailing-edge structures need to be proposed and developed to further tap the potential of bionic noise reduction.”

The team used noise calculation and analysis software to conduct a series of detailed theoretical studies of simplified airfoils with characteristics reminiscent of owl wings. They applied their findings to suppress the noise of rotating machinery.

Improving the flow conditions around the trailing edge and optimizing the shape of the edge suppressed the noise. Interestingly, asymmetric serrations reduced the noise more than their symmetric counterparts.

Noise reduction varied with different operating conditions, so the scientists emphasized that the airfoil designs should be further evaluated based on the specific application.

For example, wind turbines have complex incoming flow environments, which require a more general noise reduction technology. Examining noise reduction techniques under the influence of different incoming flows would make their conclusions more universal.

The researchers believe their work will serve as an important guide for airfoil design and noise control.

###

The article “Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlightened by owl wings” is authored by Lei Wang and Xiaomin Liu. The article will appear in Physics of Fluids on Jan. 18, 2022 (DOI: 10.1063/5.0076272). After that date, it can be accessed at https://aip.scitation.org/doi/full/10.1063/5.0076272.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0076272

Article Title

Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlightened by owl wings

Article Publication Date

18-Jan-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Edward Cachay, University of California San Diego

Mathematical model helps predict anal cancer risk in persons with HIV infection

July 1, 2022
Hospital beds

Black nursing home residents, those under age 65 more likely to have repeat transfers to hospital, MU study finds

July 1, 2022

Monkeypox virus on surfaces: no proof that contact can cause infection

July 1, 2022

HKUST develops world’s most durable hydrogen fuel cell

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineZoology/Veterinary ScienceVehiclesUrbanizationVirologyViolence/CriminalsVaccinesUniversity of WashingtonWeather/StormsWeaponryVirusUrogenital System

Recent Posts

  • Mathematical model helps predict anal cancer risk in persons with HIV infection
  • Black nursing home residents, those under age 65 more likely to have repeat transfers to hospital, MU study finds
  • Monkeypox virus on surfaces: no proof that contact can cause infection
  • HKUST develops world’s most durable hydrogen fuel cell
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....