• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Next-generation weather reporting: versatile, flexible, and economical sensors

Bioengineer by Bioengineer
May 13, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Have you ever been trapped in an unexpected torrential downpour? Weather forecasting systems have always tried to anticipate adverse weather events. These systems, however, are heavily dependent on bulky, stationary, expensive equipment such as weather radar, impeding timely updates on local weather conditions for personal use. Tackling this gap in knowledge and practicality, a research team from Osaka Metropolitan University and the University of Tokyo developed an attachable and lightweight sensor sheet that features a flexible resistive sensor and a reservoir computing analysis. This single device allows simultaneous real-time measurement of raindrop volume and wind speed, reporting weather information when attached to umbrellas, cars, or houses. Research lead Professor Kuniharu Takei of Osaka Metropolitan University noted, “The findings open up a promising economical approach to weather reporting, contributing to disaster preparedness and greater community safety.”

Fig 1. Umbrella-mounted lightweight wind and rain sensor

Credit: Kuniharu Takei, OMU

Have you ever been trapped in an unexpected torrential downpour? Weather forecasting systems have always tried to anticipate adverse weather events. These systems, however, are heavily dependent on bulky, stationary, expensive equipment such as weather radar, impeding timely updates on local weather conditions for personal use. Tackling this gap in knowledge and practicality, a research team from Osaka Metropolitan University and the University of Tokyo developed an attachable and lightweight sensor sheet that features a flexible resistive sensor and a reservoir computing analysis. This single device allows simultaneous real-time measurement of raindrop volume and wind speed, reporting weather information when attached to umbrellas, cars, or houses. Research lead Professor Kuniharu Takei of Osaka Metropolitan University noted, “The findings open up a promising economical approach to weather reporting, contributing to disaster preparedness and greater community safety.”

To determine rain volume, the sensor measures the electrical resistance generated when a raindrop hits its surface. It is protected by a superhydrophobic silicone sheet of polydimethylsiloxane (PDMS), which is infused with graphene and further processed with a laser. The superhydrophobic silicone repels water droplets, ensuring the durability and stability of the sensor. Laser texturing allows constant control and measurement of the behavior of water droplets, be they staying, sliding, bouncing, or splitting on the sensor surface. The sensor can be easily fixed to a wide range of surfaces and remains functional when flat or bent. Testing changes in rain volume estimations with the sensor mounted at various angles showed no significant differences, suggesting that the sensor can be attached to hand-carried items such as umbrellas. If widely adopted, it would be possible to obtain mass data that enables the development of real-time local weather maps.

Wind speed has a significant effect on water droplet behavior, indicating the need to measure wind speed at the same time as raindrop volume. Conventionally, measuring multiple pieces of weather data requires multiple sensors, increasing power consumption. Going beyond this traditional practice, the researchers made use of a machine learning algorithm called reservoir computing (RC) to analyze the output data. Changes in rain and wind conditions resulted in resistance changes, which were detected by the sensor and then recorded as time-series data. Such data was used to train the machine, which predicted the pattern and reported rain volume and wind speed as output information.

Even though there is still more work to be done to further improve its accuracy, the sensor is expected to be a mainstay of next-generation weather sensing. The study progresses the United Nations Sustainable Development Goals on resilient infrastructure, sustainable cities, and climate action. “We believe this device can contribute to realizing the ultimate Internet-of-Things society, which is safe, secure, comfortable, and disaster-free,” concluded Professor Takei, “and we would like to engage actively in industry-government-academia collaboration that promotes such practical applications.”

Paper information
The article, “A Multi-Tasking Flexible Sensor via Reservoir Computing,” was published in Advanced Materials (DOI 10.1002/adma.202201663) on April 20, 2022.

###

About OMU
Osaka Metropolitan University is a new public university formed by a merger between Osaka City University and Osaka Prefecture University in April 2022. For more science news, see https://www.upc-osaka.ac.jp/new-univ/en-research/, and follow @OsakaMetUniv_en, and search #OMUScience.



Journal

Advanced Materials

DOI

10.1002/adma.202201663

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A Multi-Tasking Flexible Sensor via Reservoir Computing

Article Publication Date

20-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Flameless impingement oven

Cookin’ with gas: UWO professor earns patent for flameless industrial oven

March 31, 2023
Lamprey Swimming - Modeling Study

After spinal cord injury, kinesthetic sense helps restore movement, model suggests

March 31, 2023

Plastic transistor amplifies biochemical sensing signal

March 31, 2023

Study shows ketamine could be beneficial for treating brain injury in children

March 31, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    49 shares
    Share 20 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cookin’ with gas: UWO professor earns patent for flameless industrial oven

After spinal cord injury, kinesthetic sense helps restore movement, model suggests

Plastic transistor amplifies biochemical sensing signal

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In