• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, September 22, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Next generation material that adapts to its history

Bioengineer by Bioengineer
November 15, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inspired by living systems, researchers at Aalto University have developed a new material that changes its electrical behaviour based on previous experience, effectively giving it a basic form of adaptive memory. Such adaptive materials could play a vital role in the next generation of medical and environmental sensors, as well as in soft robots or active surfaces.

Bistable magnetic pillars

Credit: Olli Ikkala / Aalto University

Inspired by living systems, researchers at Aalto University have developed a new material that changes its electrical behaviour based on previous experience, effectively giving it a basic form of adaptive memory. Such adaptive materials could play a vital role in the next generation of medical and environmental sensors, as well as in soft robots or active surfaces.

Responsive materials have become common in a range of applications, from glasses that darken in sunlight to drug delivery systems. But existing materials always react in the same way – their response to a change doesn’t depend on their history, nor do they adapt based on their past.

This is fundamentally different from living systems, which dynamically adapt their behaviour based on previous conditions. ‘One of the next big challenges in material science is to develop truly smart materials inspired by living organisms. We wanted to develop a material that would adjust its behaviour based on its history,’ says Bo Peng, an Academy Research Fellow at Aalto University who was one of the senior authors of this study.

The researchers synthesised micrometre-sized magnetic beads which were then stimulated by a magnetic field. When the magnet was on, the beads stacked up to form pillars. The strength of the magnetic field affects the shape of the pillars, which in turn affects how well they conduct electricity.

‘With this system, we coupled the magnetic field stimulus and the electrical response. Interestingly, we found that the electrical conductivity depends on whether we varied the magnetic field rapidly or slowly. That means that the electrical response depends on the history of the magnetic field. The electrical behaviour was also different if the magnetic field was increasing or decreasing. The response showed bistability, which is an elementary form of memory. The material behaves as though it has a memory of the magnetic field,’ explains Peng. 

Basic learning

The system’s memory also allows it to behave in a way that resembles rudimentary learning. Although learning in living organisms is enormously complex, its most basic element in animals is a change in the response of connections between neurons, known as synapses. Depending on how frequently they are stimulated, synapses in a neuron will become harder or easier to activate. This change, known as short-term synaptic plasticity, makes the connection between a pair of neurons stronger or weaker depending on their recent history.

The researchers were able to accomplish something similar with their magnetic beads, even though the mechanism is totally differently. When they exposed the beads to a quickly pulsing magnetic field, the material became better at conducting electricity, whereas slower pulsing made it conduct poorly.

‘This is reminiscent of short term-synaptic plasticity,’ says Aalto’s Distinguished Professor Olli Ikkala. ‘Our material functions a bit like a synapse. What we’ve demonstrated paves the way for the next generation of life-inspired materials, which will draw on biological process of adaptation, memory and learning.’

‘In the future, there could be even more materials that are algorithmically inspired by life-like properties, though they won’t involve the full complexity of biological systems. Such materials will be central to the next generation of soft robots and for medical and environmental monitoring,’ adds Ikkala.



Journal

Science Advances

DOI

10.1126/sciadv.adc9394

Article Title

Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity

Article Publication Date

11-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Sven Davisson to serve as Treasurer of AIRI

Louisiana Cancer Research Center Associate Director of Administration Sven Davisson named Treasurer of Association of Independent Research Institutes

September 22, 2023
Components of the sensor device

Pioneering health tracker for stroke survivors will use the body to transmit data

September 22, 2023

The potential of solar cars in the world

September 22, 2023

Brazilian researchers develop method of purifying water contaminated by glyphosate

September 22, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Louisiana Cancer Research Center Associate Director of Administration Sven Davisson named Treasurer of Association of Independent Research Institutes

Pioneering health tracker for stroke survivors will use the body to transmit data

The potential of solar cars in the world

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In